Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 17611, 2024 07 30.
Article in English | MEDLINE | ID: mdl-39080423

ABSTRACT

The Bacillus Calmette-Guérin (BCG) vaccine, which has been used for > 100 years to prevent tuberculosis, is well-established for bladder cancer treatment, and under study for neurological and autoimmune diseases. In patients with type 1 diabetes (T1D), BCG vaccinations have been shown in randomized clinical trials to gradually lower blood sugar to near normal levels. This effect appears to be driven by a BCG-induced shift in lymphoid cells' glucose metabolism from oxidative phosphorylation to aerobic glycolysis. The latter is a state of high glucose utilization that draws more glucose from the blood. Apart from blood, it is unknown whether BCG establishes residence in any organs and alters their glucose metabolism. In this two-year-long clinical trial in type 1 diabetics, we use positron emission tomography (PET) and x-ray computed tomography (CT) to map organs that increase their uptake of the glucose analogue 18F-fluorodeoxyglucose (18F-FDG) before versus after BCG vaccinations. We also injected BALB/c mice with BCG to test for the presence of BCG in various organs. Results from both studies point to the spleen as the dominant site for glucose uptake and BCG residence. The human spleen is significant because its 47% increase in 18F-FDG uptake by a large population of lymphocytes and monocytes might help to explain BCG's systemic lowering of blood glucose to near normal levels. Findings suggest that the spleen, triggered by BCG, assumes a critical role in systemic glucose regulation in the absence of a functional pancreas.


Subject(s)
BCG Vaccine , Blood Glucose , Diabetes Mellitus, Type 1 , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Spleen , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Spleen/metabolism , Spleen/diagnostic imaging , BCG Vaccine/therapeutic use , Humans , Animals , Blood Glucose/metabolism , Mice , Female , Male , Adult , Mice, Inbred BALB C , Middle Aged , Tomography, X-Ray Computed , Positron Emission Tomography Computed Tomography
2.
iScience ; 27(6): 109881, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39055605

ABSTRACT

The Bacillus Calmette-Guérin vaccine has many off-target benefits, including protection from diverse infectious diseases. As SARS-CoV-2 evolved, COVID-19 disease became more transmissible and less lethal. In this Phase III double-blinded, placebo-controlled trial conducted late in the pandemic, we tested at-risk US adults with type 1 diabetes if multi-dose BCG protected against COVID-19 and other infectious disease, co-primary outcomes. From April 2021 to November 2022, Tokyo-strain BCG vaccines provided significant protection against COVID-19 disease (p = 0.023) and strong platform protection against all infectious diseases (p < 0.0001). Over the course of the study, commercial COVID-19 vaccines were rolled out, most of which were mRNA-based. In contrast to the protection afforded by BCG, as reported by others, COVID-19 mRNA vaccine alone provided no protection from COVID-19 disease (p = 0.43). BCG vaccination efficacy was unaffected by concurrent COVID-19 vaccinations; COVID-19 vaccines neither helped nor hindered BCG protection.

SELECTION OF CITATIONS
SEARCH DETAIL