Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 53(4): A291-6, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24514230

ABSTRACT

Substrate defect planarization has been shown to increase the laser resistance of 1053 nm mirror coatings to greater than 100 J/cm2, an increase of 20-fold, when tested with 10 ns laser pulses. Substrate surface particles that are overcoated with optical interference mirror coatings become nodular defects, which behave as microlenses intensifying light into the defect structure. By a discrete process of angle-dependent ion etching and unidirectional ion-beam deposition, substrate defects can be reduced in cross-sectional area by over 90%.

2.
Appl Opt ; 50(9): C373-81, 2011 Mar 20.
Article in English | MEDLINE | ID: mdl-21460967

ABSTRACT

Growing laser damage sites on multilayer high-reflector coatings can limit mirror performance. One of the strategies to improve laser damage resistance is to replace the growing damage sites with predesigned benign mitigation structures. By mitigating the weakest site on the optic, the large-aperture mirror will have a laser resistance comparable to the intrinsic value of the multilayer coating. To determine the optimal mitigation geometry, the finite-difference time-domain method was used to quantify the electric-field intensification within the multilayer, at the presence of different conical pits. We find that the field intensification induced by the mitigation pit is strongly dependent on the polarization and the angle of incidence (AOI) of the incoming wave. Therefore, the optimal mitigation conical pit geometry is application specific. Furthermore, our simulation also illustrates an alternative means to achieve an optimal mitigation structure by matching the cone angle of the structure with the AOI of the incoming wave, except for the p-polarized wave at a range of incident angles between 30° and 45°.

3.
Appl Opt ; 50(9): C457-62, 2011 Mar 20.
Article in English | MEDLINE | ID: mdl-21460980

ABSTRACT

Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.

4.
Appl Opt ; 45(8): 1688-703, 2006 Mar 10.
Article in English | MEDLINE | ID: mdl-16572683

ABSTRACT

Mueller matrix imaging polarimetry of liquid-crystal-on-silicon (LCoS) panels provides detailed information useful for the diagnosis of LCoS problems and to understand the interaction of LCoS panels with other projector components. Data reduction methods are presented for the analysis of LCoS Mueller matrix images yielding contrast ratio, efficiency, spatial uniformity, and the calculation of optimum trim retarders. The effects of nonideal retardance, retardance orientation, and depolarization on LCoS system performance are described. The white-state and dark-state Mueller matrix images of an example LCoS panel are analyzed in terms of LCoS performance metrics typical for red-green-blue wavelengths of 470, 550, and 640 nm. Variations of retardance, retardance orientation, and depolarization are shown to have different effects on contrast ratio, efficiency, and brightness. Thus Mueller matrix images can diagnose LCoS problems in a way different from radiometric testing. The calculation of optimum trim retarders in the presence of spatial variations is discussed. The relationship of the LCoS retardance in single-pass (from front to back) to the double-pass retardance (from entrance to exit) is established and used to clarify coordinate system issues related to Mueller matrices for reflection devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...