Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 9(2)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572562

ABSTRACT

Maternal-derived immunity is a critical component for the survival and success of offspring in pigs to protect from circulating pathogens such as Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2). The purpose of this study is to investigate the transfer of anti-PRRSV immunity to piglets from gilts that received modified-live virus (MLV) alone (treatment (TRT) 0), or in combination with one of two autogenous inactivated vaccines (AIVs, TRT 1+2). Piglets from these gilts were challenged with the autogenous PRRSV-2 strain at two weeks of age and their adaptive immune response (IR) was evaluated until 4 weeks post inoculation (wpi). The systemic humoral and cellular IR was analyzed in the pre-farrow gilts, and in piglets, pre-inoculation, and at 2 and 4 wpi. Both AIVs partially protected the piglets with reduced lung pathology and increased weight gain; TRT 1 also lowered piglet viremia, best explained by the AIV-induced production of neutralizing antibodies in gilts and their transfer to the piglets. In piglets, pre-inoculation, the main systemic IFN-γ producers were CD21α+ B cells. From 0 to 4 wpi, the role of these B cells declined and CD4 T cells became the primary systemic IFN-γ producers. In the lungs, CD8 T cells were the primary and CD4 T cells were the secondary IFN-γ producers, including a novel subset of porcine CD8α-CCR7- CD4 T cells, potentially terminally differentiated CD4 TEMRA cells. In summary, this study demonstrates that maternal AIV vaccination can improve protection of pre-weaning piglets against PRRSV-2; it shows the importance of transferring neutralizing antibodies to piglets, and it introduces two novel immune cell subsets in pigs-IFN-γ producing CD21α+ B cells and CD8α-CCR7- CD4 T cells.

2.
Ecol Evol ; 6(22): 8075-8084, 2016 11.
Article in English | MEDLINE | ID: mdl-27878079

ABSTRACT

The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no-till, had a much greater impact on nearly everything measured compared to the crop planted. No-till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no-till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff-both of which have ecosystem-level effects and both direct and indirect effects on humans and other organisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...