Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 39(17): 6644-8, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16190223

ABSTRACT

The interaction between two contrasting examples of lake sediments and small concentrations of mercury added to the sediments in solution has been studied using X-ray absorption spectroscopy. Whereas one lake (Esthwaite Water) is biologically productive, with a seasonal cycle of phytoplankton activity, including stratification and Fe(III) reduction, and a mineralogy involving quartz, muscovite, and clinochlore, the other (Botany Pond) remains oxic throughout the year. In the latter case, the sediment is predominantly quartz and calcite. Chemical analyses of these two lake sediments reflectthe differences in mineralogy and showthat both contain significant organic carbon (approximately 10-12 wt %) and smaller amounts of S (approximately 0.2-1.7 wt %) and Cl (approximately 0.4-1.1 wt %). Despite the substantial amounts of organic matter in both sediments, the spectroscopic data show that the mercury occurs as a sulfide phase with a local structural environment akin to that in cinnabar. Parallel spectroscopic studies conducted on Hg either coprecipitated or sorbed onto FeS (mackinawite), and on oxidized mackinawite, provide supporting information; the possibility of Hg forming a chloride was eliminated by careful mapping of the relevant elements by an electron microprobe. It appears, therefore, that the high affinity of Hg for S predominates even in substantially oxic environments.


Subject(s)
Fresh Water/chemistry , Geologic Sediments/chemistry , Mercury/analysis , Sulfides/analysis , Water Pollutants, Chemical/analysis , Carbon/analysis , Environmental Monitoring , Ferrous Compounds/analysis , Minerals/analysis , Organic Chemicals/analysis , Seasons , Spectrometry, X-Ray Emission , Sulfur/analysis , Sulfur/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...