Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
2.
J Genomics ; 11: 40-44, 2023.
Article in English | MEDLINE | ID: mdl-37670735

ABSTRACT

Four Chlamydia psittaci isolates were recovered from clinical specimens from ill workers during a multistate outbreak at two chicken processing plants. Whole genome sequencing analyses revealed high similarity to C. psittaci genotype D. The isolates differed from each other by only two single nucleotide polymorphisms, indicating a common source.

3.
Ann Lab Med ; 43(4): 375-380, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36843406

ABSTRACT

We developed and assessed the performance of a new multiplex real-time PCR assay for the detection of all Chlamydia species and simultaneous differentiation of Chlamydia psittaci and Chlamydia pneumoniae-two important human respiratory pathogens-in human clinical specimens. Next-generation sequencing was used to identify unique targets to design real-time PCR assays targeting all Chlamydia species, C. psittaci, and C. pneumoniae. To validate the assay, we used a panel of 49 culture isolates comprising seven C. psittaci genotypes, eight C. pneumoniae isolates, seven other Chlamydia species, and 22 near-neighbor bacterial and viral isolates, along with 22 specimens from external quality assessment (EQA) panels and 34 nasopharyngeal and oropharyngeal swabs and cerebrospinal fluid, stool, and sputum specimens previously identified as positive or negative for C. psittaci or C. pneumoniae. The assays were 100% specific, with limits of detection of 7.64- 9.02 fg/µL. The assay results matched with historical assay results for all specimens, except for one owing to the increased sensitivity of the new C. psittaci assay; the results of the EQA specimens were 100% accurate. This assay may improve the timely and accurate clinical diagnosis of Chlamydia infections and provide a greater understanding of the burden of disease caused by these agents.


Subject(s)
Chlamydia Infections , Chlamydia , Chlamydophila psittaci , Humans , Chlamydophila psittaci/genetics , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Chlamydia/genetics , Chlamydia Infections/diagnosis , Chlamydia Infections/microbiology
4.
MMWR Morb Mortal Wkly Rep ; 70(14): 505-509, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33830980

ABSTRACT

Psittacosis is typically a mild febrile respiratory illness caused by infection with the bacterium Chlamydia psittaci and usually transmitted to humans by infected birds (1). On average, 11 psittacosis cases per year were reported in the United States during 2000-2017. During August-October 2018, the largest U.S. psittacosis outbreak in 30 years (82 cases identified*) occurred in two poultry slaughter plants, one each in Virginia and Georgia, that shared source farms (2). CDC used C. psittaci real-time polymerase chain reaction (PCR) to test 54 human specimens from this outbreak. This was the largest number of human specimens from a single outbreak ever tested for C. psittaci using real-time PCR, which is faster and more sensitive than commercially available serologic tests. This represented a rare opportunity to assess the utility of multiple specimen types for real-time PCR detection of C. psittaci. C. psittaci was detected more frequently in lower respiratory specimens (59% [10 of 17]) and stool (four of five) than in upper respiratory specimens (7% [two of 28]). Among six patients with sputum and nasopharyngeal swabs tested, C. psittaci was detected only in sputum in five patients. Cycle threshold (Ct) values suggested bacterial load was higher in lower respiratory specimens than in nasopharyngeal swabs. These findings support prioritizing lower respiratory specimens for real-time PCR detection of C. psittaci. Stool specimens might also have utility for diagnosis of psittacosis.


Subject(s)
Chlamydophila psittaci/isolation & purification , Disease Outbreaks , Mass Screening/methods , Psittacosis/diagnosis , Real-Time Polymerase Chain Reaction , Adult , Chlamydophila psittaci/genetics , Feces/microbiology , Female , Georgia/epidemiology , Humans , Male , Middle Aged , Psittacosis/epidemiology , Sputum/microbiology , Virginia/epidemiology , Young Adult
5.
PLoS One ; 15(10): e0240309, 2020.
Article in English | MEDLINE | ID: mdl-33075098

ABSTRACT

INTRODUCTION: Etiology studies of severe acute respiratory infections (SARI) in adults are limited. We studied potential etiologies of SARI among adults in six countries using multi-pathogen diagnostics. METHODS: We enrolled both adults with SARI (acute respiratory illness onset with fever and cough requiring hospitalization) and asymptomatic adults (adults hospitalized with non-infectious illnesses, non-household members accompanying SARI patients, adults enrolled from outpatient departments, and community members) in each country. Demographics, clinical data, and nasopharyngeal and oropharyngeal specimens were collected from both SARI patients and asymptomatic adults. Specimens were tested for presence of 29 pathogens utilizing the Taqman® Array Card platform. We applied a non-parametric Bayesian regression extension of a partially latent class model approach to estimate proportions of SARI caused by specific pathogens. RESULTS: We enrolled 2,388 SARI patients and 1,135 asymptomatic adults from October 2013 through October 2015. We detected ≥1 pathogen in 76% of SARI patients and 67% of asymptomatic adults. Haemophilus influenzae and Streptococcus pneumoniae were most commonly detected (≥23% of SARI patients and asymptomatic adults). Through modeling, etiology was attributed to a pathogen in most SARI patients (range among countries: 57.3-93.2%); pathogens commonly attributed to SARI etiology included influenza A (14.4-54.4%), influenza B (1.9-19.1%), rhino/enterovirus (1.8-42.6%), and RSV (3.6-14.6%). CONCLUSIONS: Use of multi-pathogen diagnostics and modeling enabled attribution of etiology in most adult SARI patients, despite frequent detection of multiple pathogens in the upper respiratory tract. Seasonal flu vaccination and development of RSV vaccine would likely reduce the burden of SARI in these populations.


Subject(s)
Bacteria/classification , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Viruses/classification , Adult , Aged , Asymptomatic Diseases/epidemiology , Bacteria/genetics , Bacteria/isolation & purification , Bangladesh , Bayes Theorem , Female , Guatemala , Humans , Male , Middle Aged , Models, Theoretical , Molecular Epidemiology , Nasopharynx/microbiology , Oropharynx/microbiology , Polymerase Chain Reaction , Viruses/genetics , Viruses/isolation & purification , Young Adult
7.
J Clin Microbiol ; 58(6)2020 05 26.
Article in English | MEDLINE | ID: mdl-32269102

ABSTRACT

We evaluated six commercial molecular tests targeting Mycoplasma pneumoniae, namely, the BioFire FilmArray respiratory panel (RP), the Meridian Alethia Mycoplasma Direct, the GenMark ePlex respiratory pathogen panel (RPP), the Luminex NxTAG RPP, the ELITech ELITe InGenius Mycoplasma MGB research use only (RUO) PCR, and the SpeeDx Resistance Plus MP assays. Laboratory-developed PCR assays at the University of Alabama at Birmingham and the Centers for Disease Control and Prevention were used as reference standards. Among 428 specimens, 212 were designated confirmed positives for M. pneumoniae The highest clinical sensitivities were found with the InGenius PCR (99.5%) and the FilmArray RP (98.1%). The Resistance Plus MP identified 93.3% of the confirmed-positive specimens, whereas 83.6, 64.6, and 55.7% were identified by the ePlex RPP, NxTAG RPP, and Mycoplasma Direct assays, respectively. There was no significant difference between the sensitivity of the reference methods and that of the FilmArray RP and InGenius assays, but the remaining four assays detected significantly fewer positive specimens (P < 0.05). Specificities of all assays were 99.5 to 100%. The Resistance Plus MP assay detected macrolide resistance in 27/33 specimens, resulting in a sensitivity of 81.8%. This study provides the first large-scale comparison of commercial molecular assays for detection of M. pneumoniae in the United States and identified clear differences among their performance. Additional studies are necessary to explore the impact of various test performances on patient outcome.


Subject(s)
Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Humans , Macrolides/pharmacology , Mycoplasma pneumoniae/genetics , Pathology, Molecular , Pneumonia, Mycoplasma/diagnosis
8.
Clin Infect Dis ; 69(Suppl 4): S311-S321, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31598666

ABSTRACT

Child Health and Mortality Prevention Surveillance (CHAMPS) laboratories are employing a variety of laboratory methods to identify infectious agents contributing to deaths of children <5 years old and stillbirths in sub-Saharan Africa and South Asia. In support of this long-term objective, our team developed TaqMan Array Cards (TACs) for testing postmortem specimens (blood, cerebrospinal fluid, lung tissue, respiratory tract swabs, and rectal swabs) for >100 real-time polymerase chain reaction (PCR) targets in total (30-45 per card depending on configuration). Multipathogen panels were configured by syndrome and customized to include pathogens of significance in young children within the regions where CHAMPS is conducted, including bacteria (57 targets covering 30 genera), viruses (48 targets covering 40 viruses), parasites (8 targets covering 8 organisms), and fungi (3 targets covering 3 organisms). The development and application of multiplex real-time PCR reactions to the TAC microfluidic platform increased the number of targets in each panel while maintaining assay efficiency and replicates for heightened sensitivity. These advances represent a substantial improvement in the utility of this technology for infectious disease diagnostics and surveillance. We optimized all aspects of the CHAMPS molecular laboratory testing workflow including nucleic acid extraction, quality assurance, and data management to ensure comprehensive molecular testing of specimens and high-quality data. Here we describe the development and implementation of multiplex TACs and associated laboratory protocols for specimen processing, testing, and data management at CHAMPS site laboratories.


Subject(s)
Population Surveillance/methods , Specimen Handling/methods , Africa South of the Sahara , Asia , Bacteria/genetics , Child , Child Health , Child Mortality , Communicable Diseases/diagnosis , Fungi/genetics , Humans , Laboratories , Molecular Diagnostic Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Viruses/genetics
9.
Emerg Infect Dis ; 24(3): 506-513, 2018 03.
Article in English | MEDLINE | ID: mdl-29460736

ABSTRACT

During 2012-2015, we tested respiratory specimens from patients with severe respiratory illness (SRI), patients with influenza-like illness (ILI), and controls in South Africa by real-time PCR for Mycoplasma pneumoniae, followed by culture and molecular characterization of positive samples. M. pneumoniae prevalence was 1.6% among SRI patients, 0.7% among ILI patients, and 0.2% among controls (p<0.001). Age <5 years (adjusted odd ratio 7.1; 95% CI 1.7-28.7) and HIV infection (adjusted odds ratio 23.8; 95% CI 4.1-138.2) among M. pneumonia-positive persons were associated with severe disease. The detection rate attributable to illness was 93.9% (95% CI 74.4%-98.5%) in SRI patients and 80.7% (95% CI 16.7%-95.6%) in ILI patients. The hospitalization rate was 28 cases/100,000 population. We observed the macrolide-susceptible M. pneumoniae genotype in all cases and found P1 types 1, 2, and a type 2 variant with multilocus variable number tandem repeat types 3/6/6/2, 3/5/6/2, and 4/5/7/2.


Subject(s)
Mycoplasma pneumoniae , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Community-Acquired Infections/epidemiology , Community-Acquired Infections/history , Community-Acquired Infections/microbiology , Female , Genotype , History, 21st Century , Hospitalization , Humans , Infant , Male , Middle Aged , Mycoplasma pneumoniae/classification , Mycoplasma pneumoniae/genetics , Pneumonia, Mycoplasma/history , Population Surveillance , Prevalence , Risk Factors , South Africa/epidemiology , Young Adult
10.
Diagn Microbiol Infect Dis ; 90(3): 167-170, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29291900

ABSTRACT

Diagnosis of Chlamydia psittaci and Chlamydia pneumoniae infections has traditionally relied on serological assays. We developed a multiplex real-time PCR assay for detection of C. psittaci, C. pneumoniae and an internal control. Results of this assay demonstrated 100% concordance compared to results of previously tested human clinical specimens.


Subject(s)
Chlamydophila Infections/diagnosis , Chlamydophila pneumoniae/genetics , Chlamydophila psittaci/genetics , Psittacosis/diagnosis , Real-Time Polymerase Chain Reaction/methods , Respiratory Tract Infections/diagnosis , Chlamydophila Infections/microbiology , Chlamydophila pneumoniae/isolation & purification , Chlamydophila psittaci/isolation & purification , DNA, Bacterial/analysis , Humans , Psittacosis/microbiology , RNA, Ribosomal, 16S/genetics , Respiratory Tract Infections/microbiology , Sensitivity and Specificity
12.
J Clin Microbiol ; 55(7): 2222-2233, 2017 07.
Article in English | MEDLINE | ID: mdl-28490485

ABSTRACT

Studies on Mycoplasma pneumoniae in Thailand have focused on urban centers and have not included molecular characterization. In an attempt to provide a more comprehensive understanding of this organism, we conducted a systematic random sampling to identify 3,000 nasopharyngeal swab specimens collected from January 2009 through July 2012 during population-based surveillance for influenza-like illness in two rural provinces. M. pneumoniae was detected by real-time PCR in 175 (5.8%) specimens. Genotyping was performed using the major adhesion protein (P1) and multilocus variable-number tandem-repeat analysis (MLVA). Of the 157 specimens typed, 97 were P1 type 1 and 60 were P1 type 2. Six different MLVA profiles were identified in 149 specimens, with 4/5/7/2 (40%) and 3/5/6/2 (26%) predominating. There was no discrete seasonality to M. pneumoniae infections. Examination of the 23S rRNA sequence for known polymorphisms conferring macrolide resistance revealed that all 141 tested to possess the genotype associated with macrolide susceptibility.


Subject(s)
Mycoplasma pneumoniae/classification , Mycoplasma pneumoniae/genetics , Pneumonia, Mycoplasma/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/pharmacology , Child , Child, Preschool , Female , Genotyping Techniques , Humans , Infant , Infant, Newborn , Macrolides/pharmacology , Male , Middle Aged , Minisatellite Repeats , Mycoplasma pneumoniae/isolation & purification , Nasopharynx/microbiology , RNA, Ribosomal, 23S/genetics , Real-Time Polymerase Chain Reaction , Rural Population , Thailand , Young Adult
13.
PLoS One ; 12(4): e0174701, 2017.
Article in English | MEDLINE | ID: mdl-28410368

ABSTRACT

Mycoplasma pneumoniae is a significant cause of respiratory illness worldwide. Despite a minimal and highly conserved genome, genetic diversity within the species may impact disease. We performed whole genome sequencing (WGS) analysis of 107 M. pneumoniae isolates, including 67 newly sequenced using the Pacific BioSciences RS II and/or Illumina MiSeq sequencing platforms. Comparative genomic analysis of 107 genomes revealed >3,000 single nucleotide polymorphisms (SNPs) in total, including 520 type-specific SNPs. Population structure analysis supported the existence of six distinct subgroups, three within each type. We developed a predictive model to classify an isolate based on whole genome SNPs called against the reference genome into the identified subtypes, obviating the need for genome assembly. This study is the most comprehensive WGS analysis for M. pneumoniae to date, underscoring the power of combining complementary sequencing technologies to overcome difficult-to-sequence regions and highlighting potential differential genomic signatures in M. pneumoniae.


Subject(s)
Computational Biology , Genome, Bacterial , Mycoplasma pneumoniae/genetics , Bacterial Typing Techniques , Bayes Theorem , Cluster Analysis , Genetic Variation , High-Throughput Nucleotide Sequencing , Mycoplasma pneumoniae/classification , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
14.
Genome Announc ; 5(8)2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28232437

ABSTRACT

Mycoplasma pneumoniae type 2 strain FH was previously sequenced with Illumina (FH-Illumina) and 454 (FH-454) technologies according to Xiao et al. (2015) and Krishnakumar et al. (2010). Comparative analyses revealed differences in genomic content between these sequences, including a 6-kb region absent from the FH-454 submission. Here, we present a complete genome sequence of FH sequenced with the Pacific Biosciences RSII platform.

15.
J Clin Microbiol ; 55(1): 110-121, 2017 01.
Article in English | MEDLINE | ID: mdl-27795345

ABSTRACT

New diagnostic platforms often use nasopharyngeal or oropharyngeal (NP/OP) swabs for pathogen detection for patients hospitalized with community-acquired pneumonia (CAP). We applied multipathogen testing to high-quality sputum specimens to determine if more pathogens can be identified relative to NP/OP swabs. Children (<18 years old) and adults hospitalized with CAP were enrolled over 2.5 years through the Etiology of Pneumonia in the Community (EPIC) study. NP/OP specimens with matching high-quality sputum (defined as ≤10 epithelial cells/low-power field [lpf] and ≥25 white blood cells/lpf or a quality score [q-score] definition of 2+) were tested by TaqMan array card (TAC), a multipathogen real-time PCR detection platform. Among 236 patients with matched specimens, a higher proportion of sputum specimens had ≥1 pathogen detected compared with NP/OP specimens in children (93% versus 68%; P < 0.0001) and adults (88% versus 61%; P < 0.0001); for each pathogen targeted, crossing threshold (CT) values were earlier in sputum. Both bacterial (361 versus 294) and viral detections (245 versus 140) were more common in sputum versus NP/OP specimens, respectively, in both children and adults. When available, high-quality sputum may be useful for testing in hospitalized CAP patients.


Subject(s)
Community-Acquired Infections/diagnosis , Pharynx/microbiology , Pharynx/virology , Pneumonia/diagnosis , Real-Time Polymerase Chain Reaction/methods , Sputum/microbiology , Sputum/virology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Molecular Diagnostic Techniques/methods , Young Adult
16.
Diagn Microbiol Infect Dis ; 87(3): 203-206, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27923522

ABSTRACT

We developed a multiplex real-time PCR assay for simultaneously detecting M. pneumoniae and typing into historically-defined P1 types. Typing was achieved based on the presence of short type-specific indels identified through whole genome sequencing. This assay was 100% specific compared to existing methods and may be useful during epidemiologic investigations.


Subject(s)
Genome, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Molecular Typing/methods , Mycoplasma pneumoniae/genetics , Pneumonia, Mycoplasma/diagnosis , Real-Time Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Base Sequence , DNA, Bacterial/genetics , Humans , Mycoplasma pneumoniae/classification , Pneumonia, Mycoplasma/microbiology , Sensitivity and Specificity , Sequence Alignment
17.
F1000Res ; 5: 1920, 2016.
Article in English | MEDLINE | ID: mdl-27781088

ABSTRACT

Background: Identifying lung pathogens and acute spikes in lung counts remain a challenge in the treatment of patients with cystic fibrosis (CF). Bacteria from the deep lung may be sampled from aerosols produced during coughing. Methods: A new device was used to collect and measure bacteria levels from cough aerosols of patients with CF. Sputum and oral specimens were also collected and measured for comparison. Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, and Streptococcus mitis were detected in specimens using Real-Time Polymerase Chain Reaction (RT-PCR) molecular assays. Results: Twenty adult patients with CF and 10 healthy controls participated. CF related bacteria (CFRB) were detected in 13/20 (65%) cough specimens versus 15/15 (100%) sputum specimens. Commensal S. mitis was present in 0/17 (0%, p=0.0002) cough specimens and 13/14 (93%) sputum samples. In normal controls, no bacteria were collected in cough specimens but 4/10 (40%) oral specimens were positive for CFRB. Conclusions: Non-invasive cough aerosol collection may detect lower respiratory pathogens in CF patients, with similar specificity and sensitivity to rates detected by BAL, without contamination by oral CFRB or commensal bacteria.

18.
Sci Rep ; 6: 33442, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27633769

ABSTRACT

Legionella species inhabit freshwater and soil ecosystems where they parasitize protozoa. L. pneumonphila (LP) serogroup-1 (Lp1) is the major cause of Legionnaires' Disease (LD), a life-threatening pulmonary infection that can spread systemically. The increased global frequency of LD caused by Lp and non-Lp species underscores the need to expand our knowledge of evolutionary forces underlying disease pathogenesis. Whole genome analyses of 43 strains, including all known Lp serogroups 1-17 and 17 emergent LD-causing Legionella species (of which 33 were sequenced in this study) in addition to 10 publicly available genomes, resolved the strains into four phylogenetic clades along host virulence demarcations. Clade-specific genes were distinct for genetic exchange and signal-transduction, indicating adaptation to specific cellular and/or environmental niches. CRISPR spacer comparisons hinted at larger pools of accessory DNA sequences in Lp than predicted by the pan-genome analyses. While recombination within Lp was frequent and has been reported previously, population structure analysis identified surprisingly few DNA admixture events between species. In summary, diverse Legionella LD-causing species share a conserved core-genome, are genetically isolated from each other, and selectively acquire genes with potential for enhanced virulence.


Subject(s)
Genome, Bacterial , Legionella/genetics , Bacterial Secretion Systems/genetics , Base Sequence , CRISPR-Cas Systems/genetics , DNA, Bacterial/genetics , Gene Transfer, Horizontal/genetics , Genes, Bacterial , Genomics , Phylogeny , Recombination, Genetic/genetics , Selection, Genetic , Species Specificity
19.
Clin Infect Dis ; 63(1): 48-56, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27001799

ABSTRACT

BACKGROUND: From January 2014-July 2014, more than 46 000 unaccompanied children (UC) from Central America crossed the US-Mexico border. In June-July, UC aged 9-17 years in 4 shelters and 1 processing center in 4 states were hospitalized with acute respiratory illness. We conducted a multistate investigation to interrupt disease transmission. METHODS: Medical charts were abstracted for hospitalized UC. Nonhospitalized UC with influenza-like illness were interviewed, and nasopharyngeal and oropharyngeal swabs were collected to detect respiratory pathogens. Nasopharyngeal swabs were used to assess pneumococcal colonization in symptomatic and asymptomatic UC. Pneumococcal blood isolates from hospitalized UC and nasopharyngeal isolates were characterized by serotyping and whole-genome sequencing. RESULTS: Among 15 hospitalized UC, 4 (44%) of 9 tested positive for influenza viruses, and 6 (43%) of 14 with blood cultures grew pneumococcus, all serotype 5. Among 48 nonhospitalized children with influenza-like illness, 1 or more respiratory pathogens were identified in 46 (96%). Among 774 nonhospitalized UC, 185 (24%) yielded pneumococcus, and 70 (38%) were serotype 5. UC transferring through the processing center were more likely to be colonized with serotype 5 (odds ratio, 3.8; 95% confidence interval, 2.1-6.9). Analysis of core pneumococcal genomes detected 2 related, yet independent, clusters. No pneumococcus cases were reported after pneumococcal and influenza immunization campaigns. CONCLUSIONS: This respiratory disease outbreak was due to multiple pathogens, including Streptococcus pneumoniae serotype 5 and influenza viruses. Pneumococcal and influenza vaccinations prevented further transmission. Future efforts to prevent similar outbreaks will benefit from use of both vaccines.


Subject(s)
Disease Outbreaks/statistics & numerical data , Influenza, Human , Pneumonia, Pneumococcal , Refugees/statistics & numerical data , Respiratory Tract Infections , Vulnerable Populations/statistics & numerical data , Adolescent , Child , Female , Hospitalization , Humans , Influenza Vaccines , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/virology , Male , Mexico/ethnology , Nasopharynx/microbiology , Nasopharynx/virology , Orthomyxoviridae , Pneumococcal Vaccines , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/prevention & control , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/prevention & control , Risk Factors , Streptococcus pneumoniae , United States/epidemiology
20.
Emerg Infect Dis ; 21(11): 2029-35, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26488195

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) causes a spectrum of illness. We evaluated whether cycle threshold (Ct) values (which are inversely related to virus load) were associated with clinical severity in patients from Saudi Arabia whose nasopharyngeal specimens tested positive for this virus by real-time reverse transcription PCR. Among 102 patients, median Ct of 31.0 for the upstream of the E gene target for 41 (40%) patients who died was significantly lower than the median of 33.0 for 61 survivors (p=0.0087). In multivariable regression analyses, risk factors for death were age>60 years), underlying illness, and decreasing Ct for each 1-point decrease in Ct). Results were similar for a composite severe outcome (death and/or intensive care unit admission). More data are needed to determine whether modulation of virus load by therapeutic agents affects clinical outcomes.


Subject(s)
Coronavirus Infections/mortality , Coronavirus/genetics , Adolescent , Adult , Aged , Child , Coronavirus/immunology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Humans , Male , Middle Aged , Prognosis , Saudi Arabia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...