Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neuroanat ; 9: 13, 2015.
Article in English | MEDLINE | ID: mdl-25750616

ABSTRACT

Spines are small protrusions arising from dendrites that receive most excitatory synaptic input in the brain. Dendritic spines represent dynamic structures that undergo activity-dependent adaptations, for example, during synaptic plasticity. Alterations of spine morphology, changes of spine type ratios or density have consequently been found in paradigms of learning and memory, and accompany many neuropsychiatric disorders. Polymorphisms in the gene encoding KIBRA, a protein present in kidney and brain, are linked to memory performance and cognition in humans and mouse models. Deletion of KIBRA impairs long-term synaptic plasticity and postsynaptic receptor recycling but no information is available on the morphology of dendritic spines in null-mutant mice. Here, we directly examine the role of KIBRA in spinous synapses using knockout mice. Since KIBRA is normally highly expressed in neocortex and hippocampus at juvenile age, we analyze synapse morphology in intact tissue and in neuronal cultures from these brain regions. Quantification of different dendritic spine types in Golgi-impregnated sections and in transfected neurons coherently reveal a robust increase of filopodial-like long protrusions in the absence of KIBRA. While distribution of pre- and postsynaptic marker proteins, overall synapse ultrastructure and density of asymmetric contacts were remarkably normal, electron microscopy additionally uncovered less perforated synapses and spinules in knockout neurons. Thus, our results indicate that KIBRA is involved in the maintenance of normal ratios of spinous synapses, and may thus provide a structural correlate of altered cognitive functions when this memory-associated molecule is mutated.

2.
Nat Commun ; 2: 557, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-22109531

ABSTRACT

A challenge in neuroscience is to understand the mechanisms underlying synapse formation. Most excitatory synapses in the brain are built on spines, which are actin-rich protrusions from dendrites. Spines are a major substrate of brain plasticity, and spine pathologies are observed in various mental illnesses. Here we investigate the role of neurobeachin (Nbea), a multidomain protein previously linked to cases of autism, in synaptogenesis. We show that deletion of Nbea leads to reduced numbers of spinous synapses in cultured neurons from complete knockouts and in cortical tissue from heterozygous mice, accompanied by altered miniature postsynaptic currents. In addition, excitatory synapses terminate mostly at dendritic shafts instead of spine heads in Nbea mutants, and actin becomes less enriched synaptically. As actin and synaptopodin, a spine-associated protein with actin-bundling activity, accumulate ectopically near the Golgi apparatus of mutant neurons, a role emerges for Nbea in trafficking important cargo to pre- and postsynaptic compartments.


Subject(s)
Carrier Proteins/metabolism , Dendritic Spines/metabolism , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Actins/genetics , Actins/metabolism , Animals , Brain/cytology , Brain/metabolism , Carrier Proteins/genetics , Cells, Cultured , Electrophysiology , Immunohistochemistry , Membrane Proteins , Mice , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Microscopy, Electron , Nerve Tissue Proteins/genetics , Synapses/metabolism
3.
J Biol Chem ; 280(7): 5795-802, 2005 Feb 18.
Article in English | MEDLINE | ID: mdl-15569680

ABSTRACT

Ultraviolet radiation is a well established epidemiologic risk factor for malignant melanoma. This observation has been linked to the relative resistance of normal melanocytes to ultraviolet B (UVB) radiation-induced apoptosis, which consequently leads to accumulation of UVB radiation-induced DNA lesions in melanocytes. Therefore, identification of physiologic factors regulating UVB radiation-induced apoptosis and DNA damage of melanocytes is of utmost biological importance. We show that the neuropeptide alpha-melanocyte-stimulating hormone (alpha-MSH) blocks UVB radiation-induced apoptosis of normal human melanocytes in vitro. The anti-apoptotic activity of alpha-MSH is not mediated by filtering or by induction of melanin synthesis in melanocytes. alpha-MSH neither leads to changes in the cell cycle distribution nor induces alterations in the expression of the apoptosis-related proteins Bcl(2), Bcl(x), Bax, p53, CD95 (Fas/APO-1), and CD95L (FasL). In contrast, alpha-MSH markedly reduces the formation of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers, ultimately leading to reduced apoptosis. The reduction of UV radiation-induced DNA damage by alpha-MSH appears to be related to induction of nucleotide excision repair, because UV radiation-mediated apoptosis was not blocked by alpha-MSH in nucleotide excision repair-deficient fibroblasts. These data, for the first time, demonstrate regulation of UVB radiation-induced apoptosis of human melanocytes by a neuropeptide that is physiologically expressed within the epidermis. Apart from its ability to induce photoprotective melanin synthesis, alpha-MSH appears to exert the capacity to reduce UV radiation-induced DNA damage and, thus, may act as a potent protection factor against the harmful effects of UV radiation on the genomic stability of epidermal cells.


Subject(s)
Apoptosis/drug effects , Apoptosis/radiation effects , DNA Damage/drug effects , DNA Damage/radiation effects , Radiation-Protective Agents/pharmacology , Ultraviolet Rays/adverse effects , alpha-MSH/pharmacology , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Fibroblasts , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Humans , Melanins/metabolism , Pyrimidine Dimers/analysis , Pyrimidine Dimers/metabolism , Pyrimidine Dimers/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...