Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Memb Sci ; 473: 28-35, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-26207081

ABSTRACT

Large scale fabrication of non-linear microporous membranes is of technological importance in many applications ranging from separation to microfluidics. However, their fabrication using traditional techniques is limited in scope. We report on fabrication and characterization of non-linear parabolic micropores (PMS) in polymer membranes by utilizing flow properties of fluids. The shape of the fabricated PMS corroborated well with simplified Navier-Stokes equation describing parabolic relationship of the form L - t1/2. Here, L is a measure of the diameter of the fabricated micropores during flow time (t). The surface of PMS is smooth due to fluid surface tension at fluid-air interface. We demonstrate fabrication of PMS using curable polydimethylsiloxane (PDMS). The parabolic shape of micropores was a result of interplay between horizontal and vertical fluid movements due to capillary, viscoelastic, and gravitational forces. We also demonstrate fabrication of asymmetric "off-centered PMS" and an array of PMS membranes using this simple fabrication technique. PMS containing membranes with nanoscale dimensions are also possible by controlling the experimental conditions. The present method provides a simple, easy to adopt, and energy efficient way for fabricating non-linear parabolic shape pores at microscale. The prepared parabolic membranes may find applications in many areas including separation, parabolic optics, micro-nozzles / -valves / -pumps, and microfluidic and microelectronic delivery systems.

2.
J Memb Sci ; 401-402: 25-32, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22942529

ABSTRACT

The ability to fabricate flexible filtration membranes that can selectively separate particles of different sizes is of considerable interest. In this article, we describe a facile, reproducible and simple one-step method to produce pores in polydimethylsiloxane (PDMS) membranes. We embedded micron-sized NaHCO(3) particles in 50 micron thick PDMS films. After curing, the membranes were immersed in concentrated HCl acid. Pores were generated in the membrane by the evolution of CO(2) gas from the reaction of NaHCO(3) and HCl. High resolution Scanning Electron Microscope images clearly reveal the presence of openings on the surface and the cross-section of the membranes. Fluorescence and back-scattered electron imaging of porous PDMS membrane with embedded gold nanoparticles and comparison with non-porous PDMS membranes provided unambiguous evidence of pores in the membrane. Transport studies of molecular fluoresceinate ions, ions (sodium and chloride) and 240 nm polystyrene nanoparticles through these membranes demonstrate passable pores and existence of channels within the body of the membrane. Mechanically stretching the porous PDMS membrane and comparing the flow rates of fluoresceinate ions and the polystyrene beads through the stretched and unstretched membranes allowed a direct proof of the modulation of transport rate in the membranes. We show that stretching the membranes by 10% increases the flow rate of fluorescein molecules by 2.8 times and by a factor of approximately ~40% for the polystyrene nanoparticles.

3.
Langmuir ; 26(22): 17726-32, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20886901

ABSTRACT

We demonstrate conical pores etched in tracked glass chips for fabricating patterns at the micrometer scale. Highly fluorescent patterns based on photopolymerization of diacetylene films were formed by irradiating UV light through conical pores called "photo-pens". The properties of photopens were investigated through experiments, finite-difference-time-domain (FDTD) simulations and numerical calculations based on Fresnel equations. We show that the pattern dimensions are easily controlled by adjusting the exposure time. Thus, patterns with a range of dimensions can be fabricated without any need of changes in the pore diameter. Parallel patterning was also demonstrated by simultaneously exposing the films to photons through multiple pores in the chip. Our method provides an inexpensive, versatile, and efficient way for patterning without the use of sophisticated masks.


Subject(s)
Microtechnology/instrumentation , Ultraviolet Rays , Glass/chemistry , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Porosity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...