Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20192526

ABSTRACT

OBJECTIVENearly 5 % of the patients with COVID-19 develop an acute respiratory distress syndrome (ARDS). Extravascular lung water index (EVLWI) is a marker of pulmonary oedema which is associated with mortality in ARDS. In this study we evaluate whether EVLWI is higher in patients with COVID-19 associated ARDS as compared to controls and whether EVLWI has the potential to monitor disease progression. METHODSFrom the day of intubation, EVLWI, cardiac function were monitored by transpulmonary thermodilution in n=25 patients with COVID-19 and compared to a control group of 49 non-COVID-19 ARDS-patients. RESULTSEVLWI in COVID-19-patients was noticeably elevated and significantly higher than in the control group (17 (11-38) vs. 11 (6-26) mL/kg; p<0.001). High pulmonary vascular permeability index values (2.9 (1.0-5.2) versus 1.9 (1.0-5.2); p=0.003) suggest inflammatory oedema. By contrast, the cardiac parameters SVI, GEF and GEDVI were comparable. High EVLWI values were associated with viral persistence, prolonged intensive care treatment and mortality (23.2{+/-}6.7% vs. 30.3{+/-}6.0%, p=0.025). CONCLUSIONSCompared to the control group, COVID-19 results in markedly elevated EVLWI-values in patients with ARDS. EVLWI reflects a non-cardiogenic pulmonary oedema in COVID-19 associated ARDS and could serve as parameter to monitor ARDS progression.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20076349

ABSTRACT

The evolving dynamics of coronavirus disease 2019 (COVID-19) and the increasing infection numbers require diagnostic tools to identify patients at high risk for a severe disease course. Here we evaluate clinical and imaging parameters for estimating the need of intensive care unit (ICU) treatment. We collected clinical, laboratory and imaging data from 65 patients with confirmed COVID-19 infection based on PCR testing. Two radiologists evaluated the severity of findings in computed tomography (CT) images on a scale from 1 (no characteristic signs of COVID-19) to 5 (confluent ground glass opacities in over 50% of the lung parenchyma). The volume of affected lung was quantified using commercially available software. Machine learning modelling was performed to estimate the risk for ICU treatment. Patients with a severe course of COVID-19 had significantly increased IL-6, CRP and leukocyte counts and significantly decreased lymphocyte counts. The radiological severity grading was significantly increased in ICU patients. Multivariate random forest modelling showed a mean {+/-} standard deviation sensitivity, specificity and accuracy of 0.72 {+/-} 0.1, 0.86 {+/-} 0.16 and 0.80 {+/-} 0.1 and a ROC-AUC of 0.79 {+/-} 0.1. The need for ICU treatment is independently associated with affected lung volume, radiological severity score, CRP and IL-6.

3.
Article in English | WPRIM (Western Pacific) | ID: wpr-772770

ABSTRACT

BACKGROUND AND OBJECTIVE@#Stroke volume variation (SVV) has high sensitivity and specificity in predicting fluid responsiveness. However, sinus rhythm (SR) and controlled mechanical ventilation (CV) are mandatory for their application. Several studies suggest a limited applicability of SVV in intensive care unit (ICU) patients. We hypothesized that the applicability of SVV might be different over time and within certain subgroups of ICU patients. Therefore, we analysed the prevalence of SR and CV in ICU patients during the first 24 h of PiCCO-monitoring (primary endpoint) and during the total ICU stay. We also investigated the applicability of SVV in the subgroups of patients with sepsis, cirrhosis, and acute pancreatitis.@*METHODS@#The prevalence of SR and CV was documented immediately before 1241 thermodilution measurements in 88 patients.@*RESULTS@#In all measurements, SVV was applicable in about 24%. However, the applicability of SVV was time-dependent: the prevalence of both SR and CV was higher during the first 24 h compared to measurements thereafter (36.1% vs. 21.9%; P<0.001). Within different subgroups, the applicability during the first 24 h of monitoring ranged between 0% in acute pancreatitis, 25.5% in liver failure, and 48.9% in patients without pancreatitis, liver failure, pneumonia or sepsis.@*CONCLUSIONS@#The applicability of SVV in a predominantly medical ICU is only about 25%-35%. The prevalence of both mandatory criteria decreases over time during the ICU stay. Furthermore, the applicability is particularly low in patients with acute pancreatitis and liver failure.


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Analysis of Variance , Blood Pressure , Fluid Therapy , Hemodynamics , Intensive Care Units , Liver Failure , Therapeutics , Monitoring, Physiologic , Methods , Pancreatitis , Therapeutics , Prospective Studies , Respiration, Artificial , Sepsis , Therapeutics , Stroke Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...