Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
J Thorac Dis ; 16(5): 3338-3349, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38883659

ABSTRACT

Background: The significant progress has been made in targeted therapy for lung adenocarcinoma (LUAD) in the past decade. Only few targeted therapeutics have yet been approved for the treatment of lung squamous cell carcinoma (LUSC). Several higher frequency of gene alterations are identified as potentially actionable in LUSC. Our work aimed to explore the complex interplay of multiple genetic alterations and pathways contributing to the pathogenesis of LUSC, with a very low frequency of a single driver molecular alterations to develop more effective therapeutic strategies in the future. Methods: We retrospectively analyzed the targeted next-generation sequencing (NGS) data (approximately 600 genes) of 335 patients initially diagnosed with non-small cell lung cancer (NSCLC) at our institution between January 2019 and March 2023 and explored the somatic genome alteration difference between LUSC and LUAD. Results: We analyzed that the presence of loss-of-function (LoF) mutations (nonsense, frameshift, and splice-site variants) in histone-lysine N-methyltransferase 2D (KMT2D) was much more prevalent in LUSC (11/53, 20.8%) than in LUAD (6/282, 2.1%). Moreover, our data indicated TP53 co-mutated with KMT2D LoF in 90.9% (10/11) LUSC and 33.3% (2/6) LUAD. Notably, the mutation allele fraction (MAF) of KMT2D was very similar to that of TP53 in the co-mutated cases. Genomic profiling of driver gene mutations of NSCLC showed that 81.8% (9/11) of the patients with LUSC with KMT2D LoF mutations had PIK3CA amplification and/or FGFR1 amplification. Conclusions: Our results prompted that somatic LoF mutations of KMT2D occur frequently in LUSC, but are less frequent in LUAD and therefore may potentially contribute to the pathogenesis of LUSC. Concurrent TP53 mutations, FGFR1 amplification, and PIK3CA amplification are very common in LUSC cases with KMT2D LoF mutations. It needs more deeper investigation on the interplay of the genes and pathways and uses larger cohorts in the future.

2.
Immunity ; 57(2): 364-378.e9, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38301651

ABSTRACT

Mutations of the CBP/p300 histone acetyltransferase (HAT) domain can be linked to leukemic transformation in humans, suggestive of a checkpoint of leukocyte compartment sizes. Here, we examined the impact of reversible inhibition of this domain by the small-molecule A485. We found that A485 triggered acute and transient mobilization of leukocytes from the bone marrow into the blood. Leukocyte mobilization by A485 was equally potent as, but mechanistically distinct from, granulocyte colony-stimulating factor (G-CSF), which allowed for additive neutrophil mobilization when both compounds were combined. These effects were maintained in models of leukopenia and conferred augmented host defenses. Mechanistically, activation of the hypothalamus-pituitary-adrenal gland (HPA) axis by A485 relayed shifts in leukocyte distribution through corticotropin-releasing hormone receptor 1 (CRHR1) and adrenocorticotropic hormone (ACTH), but independently of glucocorticoids. Our findings identify a strategy for rapid expansion of the blood leukocyte compartment via a neuroendocrine loop, with implications for the treatment of human pathologies.


Subject(s)
Bone Marrow , Histone Acetyltransferases , Humans , Histone Acetyltransferases/metabolism , Bone Marrow/metabolism , Histones/metabolism , Neutrophils/metabolism , Hypothalamo-Hypophyseal System/metabolism
3.
Nat Rev Neurosci ; 24(10): 591-604, 2023 10.
Article in English | MEDLINE | ID: mdl-37626176

ABSTRACT

Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and the neuronal populations within them, that respond to stress and transmit signals to peripheral tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological function. We comprehensively summarize studies that have employed retrograde tracing to define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation or intracerebroventricular administration of peptide hormones to control somatic immune responses. Collectively, this growing body of literature illustrates potential mechanisms through which stress signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and comorbid pathophysiology.


Subject(s)
Depressive Disorder, Major , Humans , Adipose Tissue , Anxiety , Inflammation , Immunity
4.
bioRxiv ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37205394

ABSTRACT

Hyperexcitability in the orbitofrontal cortex (OFC) is a key clinical feature of anhedonic domains of Major Depressive Disorder (MDD). However, the cellular and molecular substrates underlying this dysfunction remain unknown. Here, cell-population-specific chromatin accessibility profiling in human OFC unexpectedly mapped genetic risk for MDD exclusively to non-neuronal cells, and transcriptomic analyses revealed significant glial dysregulation in this region. Characterization of MDD-specific cis-regulatory elements identified ZBTB7A - a transcriptional regulator of astrocyte reactivity - as an important mediator of MDD-specific chromatin accessibility and gene expression. Genetic manipulations in mouse OFC demonstrated that astrocytic Zbtb7a is both necessary and sufficient to promote behavioral deficits, cell-type-specific transcriptional and chromatin profiles, and OFC neuronal hyperexcitability induced by chronic stress - a major risk factor for MDD. These data thus highlight a critical role for OFC astrocytes in stress vulnerability and pinpoint ZBTB7A as a key dysregulated factor in MDD that mediates maladaptive astrocytic functions driving OFC hyperexcitability.

5.
Immunity ; 56(7): 1502-1514.e8, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37160117

ABSTRACT

Glial cells and central nervous system (CNS)-infiltrating leukocytes contribute to multiple sclerosis (MS). However, the networks that govern crosstalk among these ontologically distinct populations remain unclear. Here, we show that, in mice and humans, CNS-resident astrocytes and infiltrating CD44hiCD4+ T cells generated interleukin-3 (IL-3), while microglia and recruited myeloid cells expressed interleukin-3 receptor-ɑ (IL-3Rɑ). Astrocytic and T cell IL-3 elicited an immune migratory and chemotactic program by IL-3Rɑ+ myeloid cells that enhanced CNS immune cell infiltration, exacerbating MS and its preclinical model. Multiregional snRNA-seq of human CNS tissue revealed the appearance of IL3RA-expressing myeloid cells with chemotactic programming in MS plaques. IL3RA expression by plaque myeloid cells and IL-3 amount in the cerebrospinal fluid predicted myeloid and T cell abundance in the CNS and correlated with MS severity. Our findings establish IL-3:IL-3RA as a glial-peripheral immune network that prompts immune cell recruitment to the CNS and worsens MS.


Subject(s)
Multiple Sclerosis , Animals , Humans , Mice , Central Nervous System , Interleukin-3 , Microglia , Neuroglia/metabolism
6.
J Cancer Res Clin Oncol ; 149(11): 9451-9459, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37103568

ABSTRACT

Acute myeloid leukaemias harbouring a rearrangement of the mixed lineage leukaemia gene (MLL) are aggressive haematopoietic malignancies that relapse early and have a poor prognosis (event-free survival less than 50%). Menin is a tumour suppressor, however, in MLL-rearranged leukaemias it functions as a co-factor which is mandatory for the leukaemic transformation by interaction with the N-terminal part of MLL, which is maintained in all MLL-fusion proteins. Inhibition of menin blocks leukaemogenesis and leads to differentiation and, in turn, to apoptosis of leukaemic blasts. Furthermore, nucleophosmin 1 (NPM1) binds to specific chromatin targets, which are co-occupied by MLL, and menin inhibition has been shown to trigger degradation of mNPM1 resulting in a rapid decrease in gene expression and activating histone modifications. Therefore, disruption of the menin-MLL axis blocks leukaemias driven by NPM1 mutations for which the expression of menin-MLL target genes (e.g., MEIS1, HOX etc.) is essential. To date at least six different menin-MLL inhibitors are undergoing clinical evaluation as first- and second-line monotherapy in acute leukaemias: DS-1594, BMF-219, JNJ-75276617, DSP-5336, revumenib, and ziftomenib, however, only for revumenib and ziftomenib early clinical data have been reported. In the revumenib phase I/II AUGMENT-101 trial (N = 68) with very heavily pretreated AML patients the ORR was 53% with a CR rate of 20%. The ORR in patients harbouring MLL rearrangement of mNPM1 was 59%. Patients who achieved a response had a mOS of 7 months. Similar results have been reported for ziftomenib in the phase I/II COMET-001 trial. ORR was 40% and CRc was 35% in AML patients with mNPM1. However, outcome was worse in AML patients with a MLL rearrangement (ORR 16.7%, CRc 11%). Differentiation syndrome was a notable adverse event. The clinical development of novel menin-MLL inhibitors is well in line with the currently ongoing paradigm shift towards targeted therapies seen in the AML treatment landscape. Moreover, the clinical assessment of combinations of these inhibitors with established therapy options in AML could be the fuel for an improved outcome of MLL/NPM1 patients.


Subject(s)
Leukemia, Myeloid, Acute , Neoplasm Recurrence, Local , Humans , Myeloid-Lymphoid Leukemia Protein/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Transcription Factors , Nuclear Proteins/genetics
7.
Eur J Cancer ; 185: 94-104, 2023 05.
Article in English | MEDLINE | ID: mdl-36966697

ABSTRACT

Anthracyclines have contributed significantly to remarkable improvements in overall survival and are regarded as the most effective cytostatic drug for cancer treatment in various malignancies. However, anthracyclines are a significant cause of acute and chronic cardiotoxicity in cancer patients, and long-term cardiotoxicity can lead to death in about one-third of patients. Several molecular pathways have been implicated in the development of anthracycline-induced cardiotoxicity, although the underlying mechanisms of some molecular pathways are not fully elucidated. It is now generally believed that anthracycline-induced reactive oxygen species (resulting from intracellular metabolism of anthracyclines) and drug-induced inhibition of topoisomerase II beta are the key mechanisms responsible for the cardiotoxicity. To prevent cardiotoxicity, several strategies are being followed: (i) angiotensin-converting enzyme inhibitors, sartans, beta-blockers, aldosterone antagonists, and statins; (ii) iron chelators; and (iii) by development of new anthracycline derivatives with little or no cardiotoxicity. This review will discuss clinically evaluated doxorubicin analogues that were developed as potentially non-cardiotoxic anticancer agents and include recent development of a novel liposomal anthracycline (L-Annamycin) for the treatment of soft-tissue sarcoma metastatic to the lung and acute myelogenous leukaemia.


Subject(s)
Anthracyclines , Neoplasms , Humans , Anthracyclines/adverse effects , Antibiotics, Antineoplastic/adverse effects , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Neoplasms/drug therapy , Angiotensin-Converting Enzyme Inhibitors/adverse effects
8.
Immunity ; 56(4): 783-796.e7, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36827982

ABSTRACT

Diet profoundly influences physiology. Whereas over-nutrition elevates risk for disease via its influence on immunity and metabolism, caloric restriction and fasting appear to be salutogenic. Despite multiple correlations observed between diet and health, the underlying biology remains unclear. Here, we identified a fasting-induced switch in leukocyte migration that prolongs monocyte lifespan and alters susceptibility to disease in mice. We show that fasting during the active phase induced the rapid return of monocytes from the blood to the bone marrow. Monocyte re-entry was orchestrated by hypothalamic-pituitary-adrenal (HPA) axis-dependent release of corticosterone, which augmented the CXCR4 chemokine receptor. Although the marrow is a safe haven for monocytes during nutrient scarcity, re-feeding prompted mobilization culminating in monocytosis of chronologically older and transcriptionally distinct monocytes. These shifts altered response to infection. Our study shows that diet-in particular, a diet's temporal dynamic balance-modulates monocyte lifespan with consequences for adaptation to external stressors.


Subject(s)
Bone Marrow , Monocytes , Mice , Animals , Bone Marrow Cells , Fasting , Chemokines/metabolism
9.
J Clin Med ; 12(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36615135

ABSTRACT

During the past few years, unexpected developments have driven studies in the field of clinical immunology. One driver of immense impact was the outbreak of a pandemic caused by the novel virus SARS-CoV-2. Excellent recent reviews address diverse aspects of immunological re-search into cardiovascular diseases. Here, we specifically focus on selected studies taking advantage of advanced state-of-the-art molecular genetic methods ranging from genome-wide epi/transcriptome mapping and variant scanning to optogenetics and chemogenetics. First, we discuss the emerging clinical relevance of advanced diagnostics for cardiovascular diseases, including those associated with COVID-19-with a focus on the role of inflammation in cardiomyopathies and arrhythmias. Second, we consider newly identified immunological interactions at organ and system levels which affect cardiovascular pathogenesis. Thus, studies into immune influences arising from the intestinal system are moving towards therapeutic exploitation. Further, powerful new research tools have enabled novel insight into brain-immune system interactions at unprecedented resolution. This latter line of investigation emphasizes the strength of influence of emotional stress-acting through defined brain regions-upon viral and cardiovascular disorders. Several challenges need to be overcome before the full impact of these far-reaching new findings will hit the clinical arena.

10.
Cells ; 11(24)2022 12 08.
Article in English | MEDLINE | ID: mdl-36552736

ABSTRACT

The evolutionary conserved NEAT1-MALAT1 gene cluster generates large noncoding transcripts remaining nuclear, while tRNA-like transcripts (mascRNA, menRNA) enzymatically generated from these precursors translocate to the cytosol. Whereas functions have been assigned to the nuclear transcripts, data on biological functions of the small cytosolic transcripts are sparse. We previously found NEAT1-/- and MALAT1-/- mice to display massive atherosclerosis and vascular inflammation. Here, employing selective targeted disruption of menRNA or mascRNA, we investigate the tRNA-like molecules as critical components of innate immunity. CRISPR-generated human ΔmascRNA and ΔmenRNA monocytes/macrophages display defective innate immune sensing, loss of cytokine control, imbalance of growth/angiogenic factor expression impacting upon angiogenesis, and altered cell-cell interaction systems. Antiviral response, foam cell formation/oxLDL uptake, and M1/M2 polarization are defective in ΔmascRNA/ΔmenRNA macrophages, defining first biological functions of menRNA and describing new functions of mascRNA. menRNA and mascRNA represent novel components of innate immunity arising from the noncoding genome. They appear as prototypes of a new class of noncoding RNAs distinct from others (miRNAs, siRNAs) by biosynthetic pathway and intracellular kinetics. Their NEAT1-MALAT1 region of origin appears as archetype of a functionally highly integrated RNA processing system.


Subject(s)
Immunity, Innate , Macrophages , RNA, Long Noncoding , RNA, Transfer , Humans , Genomics , Immunity, Innate/genetics , Immunity, Innate/immunology , Macrophages/immunology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Transfer/genetics , RNA, Transfer/immunology
12.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36129517

ABSTRACT

A sleepless night may feel awful in its aftermath, but sleep's revitalizing powers are substantial, perpetuating the idea that convalescent sleep is a consequence-free physiological reset. Although recent studies have shown that catch-up sleep insufficiently neutralizes the negative effects of sleep debt, the mechanisms that control prolonged effects of sleep disruption are not understood. Here, we show that sleep interruption restructures the epigenome of hematopoietic stem and progenitor cells (HSPCs) and increases their proliferation, thus reducing hematopoietic clonal diversity through accelerated genetic drift. Sleep fragmentation exerts a lasting influence on the HSPC epigenome, skewing commitment toward a myeloid fate and priming cells for exaggerated inflammatory bursts. Combining hematopoietic clonal tracking with mathematical modeling, we infer that sleep preserves clonal diversity by limiting neutral drift. In humans, sleep restriction alters the HSPC epigenome and activates hematopoiesis. These findings show that sleep slows decay of the hematopoietic system by calibrating the hematopoietic epigenome, constraining inflammatory output, and maintaining clonal diversity.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Cells, Cultured , Hematopoiesis/genetics , Hematopoietic Stem Cells/physiology , Humans , Sleep/genetics
13.
Transl Lung Cancer Res ; 11(8): 1631-1642, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36090643

ABSTRACT

Background: The efficacy of surgery in combination of chemotherapy for stage IIIA small cell lung cancer (IIIA-SCLC) is controversial. The aim of the present study was to analyze the efficacy of surgery combined with chemotherapy, especially in the setting of neoadjuvant chemotherapy (NAC) followed by surgery for IIIA-SCLC. Methods: Between 2004 and 2015, we reviewed 2,199 chemotherapy-treated stage IIIA (N1/2) SCLC cases in the Surveillance, Epidemiology, and End Results (SEER) database, and 32 NAC + intentional radical resection-treated, centrally-located IIIA-SCLC cases at Shanghai Pulmonary Hospital (SPH). Outcomes were compared between surgically and non-surgically treated patients from the SEER database after propensity score matching (PSM), and comparing lobectomy/bi-lobectomy and pneumonectomy patients from SPH. Prognostic factors were evaluated by Kaplan-Meier method and the Cox proportional hazards regression model. Results: There was significantly higher overall survival (OS) in surgically treated IIIA-SCLC patients (OS, 44.8 vs. 21.2 months, P=0.048), and similar efficacy was observed between sub-lobectomy and lobectomy/bi-lobectomy patients (OS: 55.6 vs. 30.3 months, P=0.167) in SEER database. At SPH, significantly higher OS was associated with T1 stage (before NAC: T1 vs. T2-4, 48.7 vs. 32.2 months, P=0.025; after NAC: T1 vs. T2-4, 42.7 vs. 21.3 months, P=0.048). Female sex [hazard ratio (HR): 0.078, P=0.009], T1 stage (HR: 13.048, P=0.026), and pneumonectomy (HR: 0.095, P=0.009) were independent prognostic factors for IIIA-SCLC patients who received NAC + intentional radical resection. Conclusions: For stage IIIA SCLC patients, complete resection combined with chemotherapy might improve the prognosis than patients without surgery. Post-NAC lobectomy was not found to be superior to sub-lobectomy, while pneumonectomy was considered suitable for central-type IIIA-SCLC patients after NAC treatment.

14.
Nature ; 607(7919): 578-584, 2022 07.
Article in English | MEDLINE | ID: mdl-35636458

ABSTRACT

The nervous and immune systems are intricately linked1. Although psychological stress is known to modulate immune function, mechanistic pathways linking stress networks in the brain to peripheral leukocytes remain poorly understood2. Here we show that distinct brain regions shape leukocyte distribution and function throughout the body during acute stress in mice. Using optogenetics and chemogenetics, we demonstrate that motor circuits induce rapid neutrophil mobilization from the bone marrow to peripheral tissues through skeletal-muscle-derived neutrophil-attracting chemokines. Conversely, the paraventricular hypothalamus controls monocyte and lymphocyte egress from secondary lymphoid organs and blood to the bone marrow through direct, cell-intrinsic glucocorticoid signalling. These stress-induced, counter-directional, population-wide leukocyte shifts are associated with altered disease susceptibility. On the one hand, acute stress changes innate immunity by reprogramming neutrophils and directing their recruitment to sites of injury. On the other hand, corticotropin-releasing hormone neuron-mediated leukocyte shifts protect against the acquisition of autoimmunity, but impair immunity to SARS-CoV-2 and influenza infection. Collectively, these data show that distinct brain regions differentially and rapidly tailor the leukocyte landscape during psychological stress, therefore calibrating the ability of the immune system to respond to physical threats.


Subject(s)
Brain , Fear , Leukocytes , Motor Neurons , Neural Pathways , Stress, Psychological , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Brain/cytology , Brain/physiology , COVID-19/immunology , Chemokines/immunology , Disease Susceptibility , Fear/physiology , Glucocorticoids/metabolism , Humans , Leukocytes/cytology , Leukocytes/immunology , Lymphocytes/cytology , Lymphocytes/immunology , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Mice , Monocytes/cytology , Monocytes/immunology , Motor Neurons/cytology , Motor Neurons/physiology , Neutrophils/cytology , Neutrophils/immunology , Optogenetics , Orthomyxoviridae Infections/immunology , Paraventricular Hypothalamic Nucleus/physiology , SARS-CoV-2/immunology , Stress, Psychological/immunology , Stress, Psychological/physiopathology
16.
Biology (Basel) ; 11(4)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35453706

ABSTRACT

Glycosaminoglycans (GAGs) are considered to be the most difficult type of glycoconjugates to analyze as they are constituted of linear long polysaccharidic chains having molecular weights reaching up to several million daltons. Bottom-up analysis of glycosaminoglycans from biological samples is a long and work-extensive procedure due to the many preparation steps involved. In addition, so far, only few research articles have been dedicated to the analysis of GAGs by means of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) because their intact ionization can be problematic due to the presence of labile sulfate groups. In this work, we had the aim of exploring the sulfation pattern of monosulfated chondroitin/dermatan sulfate (CS/DS) disaccharides in human tissue samples because they represent the most abundant form of sulfation in disaccharides. We present here an optimized strategy to analyze on-target derivatized CS/DS disaccharides via MALDI-TOF-MS using a fast workflow that does not require any purification after enzymatic cleavage. For the first time, we show that MALDI-TOF/TOF experiments allow for discrimination between monosulfated CS disaccharide isomers via specific fragments corresponding to glycosidic linkages and to cross-ring cleavages. This proof of concept is illustrated via the analysis of CS/DS disaccharides of atherosclerotic lesions of different histological origins, in which we were able to identify their monosulfation patterns.

17.
Lung Cancer ; 159: 10-17, 2021 09.
Article in English | MEDLINE | ID: mdl-34303275

ABSTRACT

The transcription factor NRF2 (nuclear factor E2-related factor 2) (also known as nuclear factor, erythroid 2 like 2 [NFE2L2]) is the master regulator of cellular antioxidant responses. NRF2 is repressed by interaction with a redox-sensitive protein KEAP1 (Kelch-like ECH-associated protein 1). Dysregulation of KEAP1/NRF2 transcriptional activity has been associated with the pathogenesis of multiple diseases, and the KEAP1/NRF2 axis has emerged to be the most important modulator of cellular homeostasis. Oxidative stress plays an important role in the initiation and progression of many chronic diseases, including diabetes, cancer, and neurodegenerative diseases. Although its role in immunotherapy is still somewhat controversial, it is well documented from clinical studies that KEAP1/NRF2 mutations in NSCLCs are associated with resistance to various cancer treatments including chemotherapy, X-irradiation, TKI treatment, and a shorter OS and currently available results from clinical trials suggest that KEAP1/NRF2 mutations can be used as a prognostic biomarker (poorer prognosis) for determining prognosis following immunotherapy and a predictive marker for chemo-, radio-, immunotherapy- and TKI-resistance. Despite overwhelming enthusiasm about the various KEAP1/NRF2 inhibitors that have been described during the last decades, none of these inhibitors are currently explored in clinical trials or in clinical applications which clearly add weight to the proposal that the development of these inhibitors remains challenging, but will be beneficial for novel treatment approaches in NSCLC in the near future. In this review we highlight the molecular features, the key components, and possible inhibitors of the KEAP1/NRF2 pathway, its role as prognostic and predictive biomarker, and the resulting clinical implications in NSCLC patients.


Subject(s)
Lung Neoplasms , NF-E2-Related Factor 2 , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , NF-E2-Related Factor 2/genetics , Phenotype
18.
Nature ; 595(7869): 701-706, 2021 07.
Article in English | MEDLINE | ID: mdl-34262178

ABSTRACT

Communication within the glial cell ecosystem is essential for neuronal and brain health1-3. The influence of glial cells on the accumulation and clearance of ß-amyloid (Aß) and neurofibrillary tau in the brains of individuals with Alzheimer's disease (AD) is poorly understood, despite growing awareness that these are therapeutically important interactions4,5. Here we show, in humans and mice, that astrocyte-sourced interleukin-3 (IL-3) programs microglia to ameliorate the pathology of AD. Upon recognition of Aß deposits, microglia increase their expression of IL-3Rα-the specific receptor for IL-3 (also known as CD123)-making them responsive to IL-3. Astrocytes constitutively produce IL-3, which elicits transcriptional, morphological, and functional programming of microglia to endow them with an acute immune response program, enhanced motility, and the capacity to cluster and clear aggregates of Aß and tau. These changes restrict AD pathology and cognitive decline. Our findings identify IL-3 as a key mediator of astrocyte-microglia cross-talk and a node for therapeutic intervention in AD.


Subject(s)
Alzheimer Disease/metabolism , Astrocytes/physiology , Interleukin-3/metabolism , Microglia/physiology , Animals , Cell Communication , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/physiology
19.
Transl Lung Cancer Res ; 10(6): 2667-2682, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34295669

ABSTRACT

Recently approved and highly specific small-molecule inhibitors of c-MET exon 14 skipping mutations (e.g., capmatinib, tepotinib) are a new and important therapeutic option for the treatment of non-small cell lung cancer (NSCLC) patients harbouring c-MET alterations. Several experimental studies have provided compelling evidence that c-MET is involved in the regulation of the immune response by up-regulating inhibitory molecules (e.g., PD-L1) and down-regulating of immune stimulators (e.g., CD137, CD252, CD70, etc.). In addition, c-MET was found to be implicated in the regulation of the inflamed tumour microenvironment (TME) and thereby contributing to an increased immune escape of tumour cells from T cell killing. Moreover, it is a major resistance mechanism following treatment of epidermal growth factor receptor mutations (EGFRmut) with tyrosine kinase receptor inhibitors (TKIs). In line with these findings c-MET alterations have also been shown to be associated with a worse clinical outcome and a poorer prognosis in NSCLC patients. However, the underlying mechanisms for these experimental observations are neither fully evaluated nor conclusive, but clearly multifactorial and most likely tumour-specific. In this regard the clinical efficacy of checkpoint inhibitors (CPIs) and TKIs against EGFRmut in NSCLC patients harbouring c-MET alterations is also not yet established, and further research will certainly provide some guidance as to optimally utilise CPIs and c-MET inhibitors in the future.

20.
Transl Lung Cancer Res ; 10(12): 4459-4476, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35070754

ABSTRACT

BACKGROUND: Metabolic reprogramming is a major feature of many tumors including non-small cell lung cancer (NSCLC). Branched-chain α-keto acid dehydrogenase kinase (BCKDK) plays an important role in diabetes, obesity, and other diseases. However, the function of BCKDK in NSCLC is unclear. This study aimed to explore the function of BCKDK in NSCLC. METHODS: Metabolites in the serum of patients with NSCLC and the supernatant of NSCLC cell cultures were detected using nuclear magnetic resonance (NMR) spectroscopy. Colony formation, cell proliferation, and cell apoptosis were assessed to investigate the function of BCKDK in the progression of NSCLC. Glucose uptake, lactate production, cellular oxygen consumption rate, extracellular acidification rate, and reactive oxygen species (ROS) were measured to examine the function of BCKDK in glucose metabolism. The expression of BCKDK was measured using reverse transcriptase-polymerase chain reaction, western blot, and immunohistochemical assay. RESULTS: Compared with healthy controls and postoperative NSCLC patients, increased branched-chain amino acid (BCAA) and decreased citrate were identified in the serum of preoperative NSCLC patients. Upregulation of BCKDK affected the metabolism of BCAAs and citrate in NSCLC cells. Knockout of BCKDK decreased the proliferation and exacerbated apoptosis of NSCLC cells ex vivo, while increased oxidative phosphorylation and, ROS levels, and inhibited glycolysis. CONCLUSIONS: BCKDK may influence glycolysis and oxidative phosphorylation by regulating the degradation of BCAA and citrate, thereby affecting the progression of NSCLC.

SELECTION OF CITATIONS
SEARCH DETAIL
...