Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Chaos ; 33(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37909903

ABSTRACT

We study theoretically the mechanisms of square wave formation of a vertically emitting micro-cavity operated in the Gires-Tournois regime that contains a Kerr medium and that is subjected to strong time-delayed optical feedback and detuned optical injection. We show that in the limit of large delay, square wave solutions of the time-delayed system can be treated as relative homoclinic solutions of an equation with an advanced argument. Based on this, we use concepts of classical homoclinic bifurcation theory to study different types of square wave solutions. In particular, we unveil the mechanisms behind the collapsed snaking scenario of square waves and explain the formation of complex-shaped multistable square wave solutions through a Bykov T-point. Finally, we relate the position of the T-point to the position of the Maxwell point in the original time-delayed system.

2.
Phys Rev E ; 106(4): L042203, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36397505

ABSTRACT

We show how solitary states in a system of globally coupled FitzHugh-Nagumo oscillators can lead to the emergence of chimera states. By a numerical bifurcation analysis of a suitable reduced system in the thermodynamic limit we demonstrate how solitary states, after emerging from the synchronous state, become chaotic in a period-doubling cascade. Subsequently, states with a single chaotic oscillator give rise to states with an increasing number of incoherent chaotic oscillators. In large systems, these chimera states show extensive chaos. We demonstrate the coexistence of many of such chaotic attractors with different Lyapunov dimensions, due to different numbers of incoherent oscillators.

3.
Biol Cybern ; 116(4): 475-499, 2022 08.
Article in English | MEDLINE | ID: mdl-35718809

ABSTRACT

Adaptation, the reduction of neuronal responses by repetitive stimulation, is a ubiquitous feature of auditory cortex (AC). It is not clear what causes adaptation, but short-term synaptic depression (STSD) is a potential candidate for the underlying mechanism. In such a case, adaptation can be directly linked with the way AC produces context-sensitive responses such as mismatch negativity and stimulus-specific adaptation observed on the single-unit level. We examined this hypothesis via a computational model based on AC anatomy, which includes serially connected core, belt, and parabelt areas. The model replicates the event-related field (ERF) of the magnetoencephalogram as well as ERF adaptation. The model dynamics are described by excitatory and inhibitory state variables of cell populations, with the excitatory connections modulated by STSD. We analysed the system dynamics by linearising the firing rates and solving the STSD equation using time-scale separation. This allows for characterisation of AC dynamics as a superposition of damped harmonic oscillators, so-called normal modes. We show that repetition suppression of the N1m is due to a mixture of causes, with stimulus repetition modifying both the amplitudes and the frequencies of the normal modes. In this view, adaptation results from a complete reorganisation of AC dynamics rather than a reduction of activity in discrete sources. Further, both the network structure and the balance between excitation and inhibition contribute significantly to the rate with which AC recovers from adaptation. This lifetime of adaptation is longer in the belt and parabelt than in the core area, despite the time constants of STSD being spatially homogeneous. Finally, we critically evaluate the use of a single exponential function to describe recovery from adaptation.


Subject(s)
Auditory Cortex , Acoustic Stimulation , Adaptation, Physiological/physiology , Auditory Cortex/physiology , Neurons/physiology
4.
Phys Rev E ; 104(5): L052201, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942776

ABSTRACT

Self-organized coherence-incoherence patterns, called chimera states, have first been reported in systems of Kuramoto oscillators. For coupled excitable units, similar patterns where coherent units are at rest are called bump states. Here, we study bumps in an array of active rotators coupled by nonlocal attraction and global repulsion. We demonstrate how they can emerge in a supercritical scenario from completely coherent Turing patterns: a single incoherent unit appears in a homoclinic bifurcation, undergoing subsequent transitions to quasiperiodic and chaotic behavior, which eventually transforms into extensive chaos with many incoherent units. We present different types of transitions and explain the formation of coherence-incoherence patterns according to the classical paradigm of short-range activation and long-range inhibition.

5.
Chaos ; 30(8): 083109, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32872843

ABSTRACT

We study an excitable active rotator with slowly adapting nonlinear feedback and noise. Depending on the adaptation and the noise level, this system may display noise-induced spiking, noise-perturbed oscillations, or stochastic bursting. We show how the system exhibits transitions between these dynamical regimes, as well as how one can enhance or suppress the coherence resonance or effectively control the features of the stochastic bursting. The setup can be considered a paradigmatic model for a neuron with a slow recovery variable or, more generally, as an excitable system under the influence of a nonlinear control mechanism. We employ a multiple timescale approach that combines the classical adiabatic elimination with averaging of rapid oscillations and stochastic averaging of noise-induced fluctuations by a corresponding stationary Fokker-Planck equation. This allows us to perform a numerical bifurcation analysis of a reduced slow system and to determine the parameter regions associated with different types of dynamics. In particular, we demonstrate the existence of a region of bistability, where the noise-induced switching between a stationary and an oscillatory regime gives rise to stochastic bursting.

6.
Chaos ; 29(10): 103114, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31675832

ABSTRACT

We investigate the appearance of sharp pulses in the mean field of Kuramoto-type globally-coupled phase oscillator systems. In systems with exactly equidistant natural frequencies, self-organized periodic pulsations of the mean field, called mode locking, have been described recently as a new collective dynamics below the synchronization threshold. We show here that mode locking can appear also for frequency combs with modes of finite width, where the natural frequencies are randomly chosen from equidistant frequency intervals. In contrast to that, so-called coherence echoes, which manifest themselves also as pulses in the mean field, have been found in systems with completely disordered natural frequencies as a result of two consecutive stimulations applied to the system. We show that such echo pulses can be explained by a stimulation induced mode locking of a subpopulation representing a frequency comb. Moreover, we find that the presence of a second harmonic in the interaction function, which can lead to the global stability of the mode-locking regime for equidistant natural frequencies, can enhance the echo phenomenon significantly. The nonmonotonic behavior of echo amplitudes can be explained as a result of the linear dispersion within the self-organized mode-locked frequency comb. Finally, we investigate the effect of small periodic stimulations on oscillator systems with disordered natural frequencies and show how the global coupling can support the stimulated pulsation by increasing the width of locking plateaus.

7.
Phys Rev Lett ; 123(5): 053901, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31491298

ABSTRACT

Localized states are a universal phenomenon observed in spatially distributed dissipative nonlinear systems. Known as dissipative solitons, autosolitons, and spot or pulse solutions, these states play an important role in data transmission using optical pulses, neural signal propagation, and other processes. While this phenomenon was thoroughly studied in spatially extended systems, temporally localized states are gaining attention only recently, driven primarily by applications from fiber or semiconductor lasers. Here we present a theory for temporal dissipative solitons (TDS) in systems with time-delayed feedback. In particular, we derive a system with an advanced argument, which determines the profile of the TDS. We also provide a complete classification of the spectrum of TDS into interface and pseudocontinuous spectrum. We illustrate our theory with two examples: a generic delayed phase oscillator, which is a reduced model for an injected laser with feedback, and the FitzHugh-Nagumo neuron with delayed feedback. Finally, we discuss possible destabilization mechanisms of TDS and show an example where the TDS delocalizes and its pseudocontinuous spectrum develops a modulational instability.

8.
Phys Rev E ; 99(4-1): 042207, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108685

ABSTRACT

We study a system of two identical FitzHugh-Nagumo units with a mutual linear coupling in the fast variables. While an attractive coupling always leads to synchronous behavior, a repulsive coupling can give rise to dynamical regimes with alternating spiking order, called leap-frogging. We analyze various types of periodic and chaotic leap-frogging regimes, using numerical path-following methods to investigate their emergence and stability, as well as to obtain the complex bifurcation scenario which organizes their appearance in parameter space. In particular, we show that the stability region of the simplest periodic leap-frog pattern has the shape of a locking cone pointing to the canard transition of the uncoupled system. We also discuss the role of the timescale separation in the coupled FitzHugh-Nagumo system and the relation of the leap-frog solutions to the theory of mixed-mode oscillations in multiple timescale systems.

9.
Chaos ; 28(7): 071105, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30070536

ABSTRACT

The classical notion of excitability refers to an equilibrium state that shows under the influence of perturbations a nonlinear threshold-like behavior. Here, we extend this concept by demonstrating how periodic orbits can exhibit a specific form of excitable behavior where the nonlinear threshold-like response appears only after perturbations applied within a certain part of the periodic orbit, i.e., the excitability happens to be phase-sensitive. As a paradigmatic example of this concept, we employ the classical FitzHugh-Nagumo system. The relaxation oscillations, appearing in the oscillatory regime of this system, turn out to exhibit a phase-sensitive nonlinear threshold-like response to perturbations, which can be explained by the nonlinear behavior in the vicinity of the canard trajectory. Triggering the phase-sensitive excitability of the relaxation oscillations by noise, we find a characteristic non-monotone dependence of the mean spiking rate of the relaxation oscillation on the noise level. We explain this non-monotone dependence as a result of an interplay of two competing effects of the increasing noise: the growing efficiency of the excitation and the degradation of the nonlinear response.

10.
Chaos ; 27(11): 114201, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29195312

ABSTRACT

The field of dynamical systems with time delay is an active research area that connects practically all scientific disciplines including mathematics, physics, engineering, biology, neuroscience, physiology, economics, and many others. This Focus Issue brings together contributions from both experimental and theoretical groups and emphasizes a large variety of applications. In particular, lasers and optoelectronic oscillators subject to time-delayed feedbacks have been explored by several authors for their specific dynamical output, but also because they are ideal test-beds for experimental studies of delay induced phenomena. Topics include the control of cavity solitons, as light spots in spatially extended systems, new devices for chaos communication or random number generation, higher order locking phenomena between delay and laser oscillation period, and systematic bifurcation studies of mode-locked laser systems. Moreover, two original theoretical approaches are explored for the so-called Low Frequency Fluctuations, a particular chaotical regime in laser output which has attracted a lot of interest for more than 30 years. Current hot problems such as the synchronization properties of networks of delay-coupled units, novel stabilization techniques, and the large delay limit of a delay differential equation are also addressed in this special issue. In addition, analytical and numerical tools for bifurcation problems with or without noise and two reviews on concrete questions are proposed. The first review deals with the rich dynamics of simple delay climate models for El Nino Southern Oscillations, and the second review concentrates on neuromorphic photonic circuits where optical elements are used to emulate spiking neurons. Finally, two interesting biological problems are considered in this Focus Issue, namely, multi-strain epidemic models and the interaction of glucose and insulin for more effective treatment.

11.
Phys Rev E ; 96(4-1): 042217, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29347517

ABSTRACT

We investigate the relation between the dynamics of a single oscillator with delayed self-feedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings. We discover several cases where the stability of a periodic solution for the single unit can be related to the stability of the corresponding rotating wave in the ring. As a specific example, we demonstrate how the complex bifurcation scenario of simultaneously emerging multijittering solutions can be transferred from a single oscillator with delayed pulse feedback to multijittering rotating waves in a sufficiently large ring of oscillators with instantaneous pulse coupling. Finally, we present an experimental realization of this dynamical phenomenon in a system of coupled electronic circuits of FitzHugh-Nagumo type.

12.
Phys Rev E ; 96(5-1): 052205, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29347775

ABSTRACT

We investigate the dynamics of a Kuramoto-type system of globally coupled phase oscillators with equidistant natural frequencies and a coupling strength below the synchronization threshold. It turns out that in such cases one can observe a stable regime of sharp pulses in the mean field amplitude with a pulsation frequency given by spacing of the natural frequencies. This resembles a process known as mode locking in lasers and relies on the emergence of a phase relation induced by the nonlinear coupling. We discuss the role of the first and second harmonics in the phase-interaction function for the stability of the pulsations and present various bifurcating dynamical regimes such as periodically and chaotically modulated mode locking, transitions to phase turbulence, and intermittency. Moreover, we study the role of the system size and show that in certain cases one can observe type II supertransients, where the system reaches the globally stable mode-locking solution only after an exponentially long transient of phase turbulence.

13.
Chaos ; 26(9): 094806, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27781457

ABSTRACT

We discuss the influence of small phase lags on the synchronization transitions in the Kuramoto model for a large inhomogeneous population of globally coupled phase oscillators. Without a phase lag, all unimodal distributions of the natural frequencies give rise to a classical synchronization scenario, where above the onset of synchrony at the Kuramoto threshold, there is an increasing synchrony for increasing coupling strength. We show that already for arbitrarily small phase lags, there are certain unimodal distributions of natural frequencies such that for increasing coupling strength synchrony may decrease and even complete incoherence may regain stability. Moreover, our example allows a qualitative understanding of the mechanism for such non-universal synchronization transitions.

14.
Phys Rev Lett ; 116(11): 114101, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27035303

ABSTRACT

We propose a control scheme which can stabilize and fix the position of chimera states in small networks. Chimeras consist of coexisting domains of spatially coherent and incoherent dynamics in systems of nonlocally coupled identical oscillators. Chimera states are generally difficult to observe in small networks due to their short lifetime and erratic drifting of the spatial position of the incoherent domain. The control scheme, like a tweezer, might be useful in experiments, where usually only small networks can be realized.

15.
Chaos ; 25(5): 053113, 2015 May.
Article in English | MEDLINE | ID: mdl-26026325

ABSTRACT

We study a system of phase oscillators with nonlocal coupling in a ring that supports self-organized patterns of coherence and incoherence, called chimera states. Introducing a global feedback loop, connecting the phase lag to the order parameter, we can observe chimera states also for systems with a small number of oscillators. Numerical simulations show a huge variety of regular and irregular patterns composed of localized phase slipping events of single oscillators. Using methods of classical finite dimensional chaos and bifurcation theory, we can identify the emergence of chaotic chimera states as a result of transitions to chaos via period doubling cascades, torus breakup, and intermittency. We can explain the observed phenomena by a mechanism of self-modulated excitability in a discrete excitable medium.

16.
Chaos ; 24(2): 023102, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24985416

ABSTRACT

We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly "twisted" in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system.

17.
Phys Rev Lett ; 112(5): 054102, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24580597

ABSTRACT

We present a control scheme that is able to find and stabilize an unstable chaotic regime in a system with a large number of interacting particles. This allows us to track a high dimensional chaotic attractor through a bifurcation where it loses its attractivity. Similar to classical delayed feedback control, the scheme is noninvasive, however only in an appropriately relaxed sense considering the chaotic regime as a statistical equilibrium displaying random fluctuations as a finite size effect. We demonstrate the control scheme for so-called chimera states, which are coherence-incoherence patterns in coupled oscillator systems. The control makes chimera states observable close to coherence, for small numbers of oscillators, and for random initial conditions.

18.
Phys Rev Lett ; 109(16): 164101, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23215080

ABSTRACT

We investigate the transition to synchrony in a system of phase oscillators that are globally coupled with a phase lag (Sakaguchi-Kuramoto model). We show that for certain unimodal frequency distributions there appear unusual types of synchronization transitions, where synchrony can decay with increasing coupling, incoherence can regain stability for increasing coupling, or multistability between partially synchronized states and/or the incoherent state can appear. Our method is a bifurcation analysis based on a frequency dependent version of the Ott-Antonsen method and allows for a universal description of possible synchronization transition scenarios for any given distribution of natural frequencies.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 2): 015201, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21867244

ABSTRACT

Spatiotemporal chaos and turbulence are universal concepts for the explanation of irregular behavior in various physical systems. Recently, a remarkable new phenomenon, called "chimera states," has been described, where in a spatially homogeneous system, regions of irregular incoherent motion coexist with regular synchronized motion, forming a self-organized pattern in a population of nonlocally coupled oscillators. Whereas most previous studies of chimera states focused their attention on the case of large numbers of oscillators employing the thermodynamic limit of infinitely many oscillators, here we investigate the properties of chimera states in populations of finite size using concepts from deterministic chaos. Our calculations of the Lyapunov spectrum show that the incoherent motion, which is described in the thermodynamic limit as a stationary behavior, in finite size systems appears as weak spatially extensive chaos. Moreover, for sufficiently small populations the chimera states reveal their transient nature: after a certain time span we observe a sudden collapse of the chimera pattern and a transition to the completely coherent state. Our results indicate that chimera states can be considered as chaotic transients, showing the same properties as type-II supertransients in coupled map lattices.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(6 Pt 2): 065201, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20866466

ABSTRACT

Chimera states are a recently new discovered dynamical phenomenon that appears in arrays of nonlocally coupled oscillators and displays a spatial pattern of coherent and incoherent regions. We report here an additional feature of this dynamical regime: an irregular motion of the position of the coherent and incoherent regions, i.e., we reveal the nature of the chimera as a spatiotemporal pattern with a regular macroscopic pattern in space, and an irregular motion in time. This motion is a finite-size effect that is not observed in the thermodynamic limit. We show that on a large time scale, it can be described as a Brownian motion. We provide a detailed study of its dependence on the number of oscillators N and the parameters of the system.


Subject(s)
Motion , Nonlinear Dynamics , Diffusion , Stochastic Processes , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...