Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Nucl Med ; 60(6): 812-816, 2019 06.
Article in English | MEDLINE | ID: mdl-30504139

ABSTRACT

Being highly expressed in insulinomas, the glucagonlike peptide-1 receptor (GLP-1R) is a potential target for diagnosis, localization, and treatment with the radiolabeled GLP-1R agonist exendin. Tracer accumulation in the kidneys, however, hampers accurate diagnostic visualization of pancreatic tissue and prohibits the therapeutic application of radiolabeled exendin for ß-cell-derived tumors. Therefore, we evaluated the ability of succinylated gelatin (Gelofusine) to reduce the renal accumulation of radiolabeled exendin in humans, and we performed dosimetric calculations to estimate the maximum absorbed insulinoma dose that could be achieved if exendin were to be used for peptide receptor radionuclide therapy. Methods: Ten healthy volunteers received 50 MBq of 111In-exendin-4, in combination with Gelofusine or saline, in a crossover design. SPECT/CT images were obtained after 24 h. The procedure was repeated 3 wk later. Uptake of 111In-exendin was determined by drawing regions of interest around the kidneys and in the pancreas. Planar scintigraphic 111In-exendin images of 5 insulinoma patients were used for dosimetry studies estimating the maximum insulinoma absorbed dose that could be achieved without causing radiotoxicity to other organs. Results: Gelofusine reduced the renal accumulation of 111In-exendin-4 by 18.1%, whereas the pancreatic uptake remained unchanged. In 3 of 10 subjects, the kidney uptake was reduced to such an extent that the pancreatic tail could be better discriminated from the kidney signal. Dosimetric estimations suggested that the insulinoma absorbed dose ranges from 30.3 to 127.8 Gy. This dose could be further increased to maximally 156.1 Gy if Gelofusine was used. Conclusion: We have shown that Gelofusine can reduce the renal accumulation of 111In-exendin-4 in humans. This reduction not only allows more accurate qualitative and quantitative analyses of radiolabeled exendin uptake in the tail region of the pancreas but also potentiates the safe delivery of a higher radiation dose to GLP-1R-positive tumors for therapy.


Subject(s)
Exenatide/therapeutic use , Gelatin/pharmacology , Insulinoma/diagnostic imaging , Insulinoma/radiotherapy , Succinates/pharmacology , Adult , Biological Transport/drug effects , Exenatide/metabolism , Female , Humans , Image Processing, Computer-Assisted , Indium Radioisotopes/therapeutic use , Insulinoma/metabolism , Isotope Labeling , Kidney/drug effects , Kidney/metabolism , Male , Single Photon Emission Computed Tomography Computed Tomography
2.
Sci Rep ; 7: 39800, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28067253

ABSTRACT

Radiolabeled exendin is used for non-invasive quantification of beta cells in the islets of Langerhans in vivo. High accumulation of radiolabeled exendin in the islets raised concerns about possible radiation-induced damage to these islets in man. In this work, islet absorbed doses resulting from exendin-imaging were calculated by combining whole organ dosimetry with small scale dosimetry for the islets. Our model contains the tissues with high accumulation of radiolabeled exendin: kidneys, pancreas and islets. As input for the model, data from a clinical study (radiolabeled exendin distribution in the human body) and from a preclinical study with Biobreeding Diabetes Prone (BBDP) rats (islet-to-exocrine uptake ratio, beta cell mass) were used. We simulated 111In-exendin and 68Ga-exendin absorbed doses in patients with differences in gender, islet size, beta cell mass and radiopharmaceutical uptake in the kidneys. In all simulated cases the islet absorbed dose was small, maximum 1.38 mGy for 68Ga and 66.0 mGy for 111In. The two sources mainly contributing to the islet absorbed dose are the kidneys (33-61%) and the islet self-dose (7.5-57%). In conclusion, all islet absorbed doses are low (<70 mGy), so even repeated imaging will hardly increase the risk on diabetes.


Subject(s)
Insulin-Secreting Cells/pathology , Islets of Langerhans/pathology , Kidney/metabolism , Radiation Injuries/diagnosis , Radiometry/methods , Adult , Animals , Cell Count , Diabetes Mellitus/etiology , Diabetes Mellitus/genetics , Disease Models, Animal , Female , Gallium Radioisotopes/chemistry , Gallium Radioisotopes/metabolism , Humans , Indium Radioisotopes/chemistry , Indium Radioisotopes/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/radiation effects , Intercellular Signaling Peptides and Proteins , Islets of Langerhans/metabolism , Islets of Langerhans/radiation effects , Kidney/radiation effects , Male , Middle Aged , Peptides/chemistry , Peptides/metabolism , Radiation , Radiation Dosage , Rats , Rats, Mutant Strains , Young Adult
3.
EJNMMI Phys ; 3(1): 29, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27928774

ABSTRACT

BACKGROUND: Quantitative single photon emission computed tomography (SPECT) is challenging, especially for pancreatic beta cell imaging with 111In-exendin due to high uptake in the kidneys versus much lower uptake in the nearby pancreas. Therefore, we designed a three-dimensionally (3D) printed phantom representing the pancreas and kidneys to mimic the human situation in beta cell imaging. The phantom was used to assess the effect of different reconstruction settings on the quantification of the pancreas uptake for two different, commercially available software packages. METHODS: 3D-printed, hollow pancreas and kidney compartments were inserted into the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom casing. These organs and the background compartment were filled with activities simulating relatively high and low pancreatic 111In-exendin uptake for, respectively, healthy humans and type 1 diabetes patients. Images were reconstructed using Siemens Flash 3D and Hermes Hybrid Recon, with varying numbers of iterations and subsets and corrections. Images were visually assessed on homogeneity and artefacts, and quantitatively by the pancreas-to-kidney activity concentration ratio. RESULTS: Phantom images were similar to clinical images and showed comparable artefacts. All corrections were required to clearly visualize the pancreas. Increased numbers of subsets and iterations improved the quantitative performance but decreased homogeneity both in the pancreas and the background. Based on the phantom analyses, the Hybrid Recon reconstruction with 6 iterations and 16 subsets was found to be most suitable for clinical use. CONCLUSIONS: This work strongly contributed to quantification of pancreatic 111In-exendin uptake. It showed how clinical images of 111In-exendin can be interpreted and enabled selection of the most appropriate protocol for clinical use.

4.
EJNMMI Phys ; 2(1): 5, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26501807

ABSTRACT

BACKGROUND: Red bone marrow (RBM) toxicity is dose-limiting in (pretargeted) radioimmunotherapy (RIT). Previous blood-based and two-dimensional (2D) image-based methods have failed to show a clear dose-response relationship. We developed a three-dimensional (3D) image-based RBM dosimetry approach using the Monte Carlo-based 3D radiobiological dosimetry (3D-RD) software and determined its additional value for predicting RBM toxicity. METHODS: RBM doses were calculated for 13 colorectal cancer patients after pretargeted RIT with the two-step administration of an anti-CEA × anti-HSG bispecific monoclonal antibody and a (177)Lu-labeled di-HSG-peptide. 3D-RD RBM dosimetry was based on the lumbar vertebrae, delineated on single photon emission computed tomography (SPECT) scans acquired directly, 3, 24, and 72 h after (177)Lu administration. RBM doses were correlated to hematologic effects, according to NCI-CTC v3 and compared with conventional 2D cranium-based and blood-based dosimetry results. Tumor doses were calculated with 3D-RD, which has not been possible with 2D dosimetry. Tumor-to-RBM dose ratios were calculated and compared for (177)Lu-based pretargeted RIT and simulated pretargeted RIT with (90)Y. RESULTS: 3D-RD RBM doses of all seven patients who developed thrombocytopenia were higher (range 0.43 to 0.97 Gy) than that of the six patients without thrombocytopenia (range 0.12 to 0.39 Gy), except in one patient (0.47 Gy) without thrombocytopenia but with grade 2 leucopenia. Blood and 2D image-based RBM doses for patients with grade 1 to 2 thrombocytopenia were in the same range as in patients without thrombocytopenia (0.14 to 0.29 and 0.11 to 0.26 Gy, respectively). Blood-based RBM doses for two grade 3 to 4 patients were higher (0.66 and 0.51 Gy, respectively) than the others, and the cranium-based dose of only the grade 4 patient was higher (0.34 Gy). Tumor-to-RBM dose ratios would increase by 25% on average when treating with (90)Y instead of (177)Lu. CONCLUSIONS: 3D dosimetry identifies patients at risk of developing any grade of RBM toxicity more accurately than blood- or 2D image-based methods. It has the added value to enable calculation of tumor-to-RBM dose ratios.

5.
Eur J Nucl Med Mol Imaging ; 41(8): 1593-602, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24643780

ABSTRACT

PURPOSE: Pretargeted radioimmunotherapy (PRIT) with bispecific antibodies (bsMAb) and a radiolabeled peptide reduces the radiation dose to normal tissues. Here we report the accuracy of an (111)In-labeled pretherapy test dose for personalized dosing of (177)Lu-labeled IMP288 following pretargeting with the anti-CEA × anti-hapten bsMAb, TF2, in patients with metastatic colorectal cancer (CRC). METHODS: In 20 patients bone marrow absorbed doses (BMD) and doses to the kidneys were predicted based on blood samples and scintigrams acquired after (111)In-IMP288 injection for individualized dosing of PRIT with (177)Lu-IMP288. Different dose schedules were studied, varying the interval between the bsMAb and peptide administration (5 days vs. 1 day), increasing the bsMAb dose (75 mg vs. 150 mg), and lowering the peptide dose (100 µg vs. 25 µg). RESULTS: TF2 and (111)In/(177)Lu-IMP288 clearance was highly variable. A strong correlation was observed between peptide residence times and individual TF2 blood concentrations at the time of peptide injection (Spearman's ρ = 0.94, P < 0.0001). PRIT with 7.4 GBq (177)Lu-IMP288 resulted in low radiation doses to normal tissues (BMD <0.5 Gy, kidney dose <3 Gy). Predicted (177)Lu-IMP288 BMD were in good agreement with the actual measured doses (mean ± SD difference -0.0026 ± 0.028 mGy/MBq). Hematological toxicity was mild in most patients, with only two (10 %) having grade 3-4 thrombocytopenia. A correlation was found between platelet toxicity and BMD (Spearman's ρ = 0.58, P = 0.008). No nonhematological toxicity was observed. CONCLUSION: These results show that individual high activity doses in PRIT in patients with CEA-expressing CRC could be safely administered by predicting the radiation dose to red marrow and kidneys, based on dosimetric analysis of a test dose of TF2 and (111)In-IMP288.


Subject(s)
Colorectal Neoplasms/radiotherapy , Precision Medicine/methods , Radiation Dosage , Radioimmunotherapy , Radiometry/methods , Adult , Aged , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/pharmacokinetics , Antibodies, Bispecific/therapeutic use , Carcinoembryonic Antigen/immunology , Colorectal Neoplasms/diagnostic imaging , Female , Haptens/immunology , Heterocyclic Compounds, 1-Ring/administration & dosage , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Heterocyclic Compounds, 1-Ring/therapeutic use , Humans , Indium Radioisotopes/administration & dosage , Indium Radioisotopes/pharmacokinetics , Indium Radioisotopes/therapeutic use , Lutetium/administration & dosage , Lutetium/pharmacokinetics , Lutetium/therapeutic use , Male , Middle Aged , Oligopeptides/administration & dosage , Oligopeptides/pharmacokinetics , Oligopeptides/therapeutic use , Tomography, Emission-Computed, Single-Photon
6.
Diabetologia ; 57(5): 950-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24488022

ABSTRACT

AIMS/HYPOTHESIS: A reliable method for in vivo quantification of pancreatic beta cell mass (BCM) could lead to further insight into the pathophysiology of diabetes. The glucagon-like peptide 1 receptor, abundantly expressed on beta cells, may be a suitable target for imaging. We investigated the potential of radiotracer imaging with the GLP-1 analogue exendin labelled with indium-111 for determination of BCM in vivo in a rodent model of beta cell loss and in patients with type 1 diabetes and healthy individuals. METHODS: The targeting of (111)In-labelled exendin was examined in a rat model of alloxan-induced beta cell loss. Rats were injected with 15 MBq (111)In-labelled exendin and single photon emission computed tomography (SPECT) acquisition was performed 1 h post injection, followed by dissection, biodistribution and ex vivo autoradiography studies of pancreatic sections. BCM was determined by morphometric analysis after staining with an anti-insulin antibody. For clinical evaluation SPECT was acquired 4, 24 and 48 h after injection of 150 MBq (111)In-labelled exendin in five patients with type 1 diabetes and five healthy individuals. The tracer uptake was determined by quantitative analysis of the SPECT images. RESULTS: In rats, (111)In-labelled exendin specifically targets the beta cells and pancreatic uptake is highly correlated with BCM. In humans, the pancreas was visible in SPECT images and the pancreatic uptake showed high interindividual variation with a substantially lower uptake in patients with type 1 diabetes. CONCLUSIONS/INTERPRETATION: These studies indicate that (111)In-labelled exendin may be suitable for non-invasive quantification of BCM. TRIAL REGISTRATION: ClinicalTrials.gov NCT01825148, EudraCT: 2012-000619-10.


Subject(s)
Diabetes Mellitus, Type 1/diagnostic imaging , Indium Radioisotopes , Insulin-Secreting Cells/diagnostic imaging , Peptides , Tomography, Emission-Computed, Single-Photon/methods , Adolescent , Adult , Animals , Diabetes Mellitus, Type 1/blood , Female , Glucagon-Like Peptide-1 Receptor , Humans , Intercellular Signaling Peptides and Proteins , Male , Middle Aged , Radiopharmaceuticals , Rats , Receptors, Glucagon/metabolism , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...