Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 37: 101681, 2020 10.
Article in English | MEDLINE | ID: mdl-32828705

ABSTRACT

Sorsby Fundus Dystrophy (SFD) is a rare inherited autosomal dominant macular degeneration caused by specific mutations in TIMP3. Patients with SFD present with pathophysiology similar to the more common Age-related Macular Degeneration (AMD) and loss of vision due to both choroidal neovascularization and geographic atrophy. Previously, it has been shown that RPE degeneration in AMD is due in part to oxidative stress. We hypothesized that similar mechanisms may be at play in SFD. The objective of this study was to evaluate whether mice carrying the S179C-Timp3 mutation, a variant commonly observed in SFD, showed increased sensitivity to oxidative stress. Antioxidant genes are increased at baseline in the RPE in SFD mouse models, but not in the retina. This suggests the presence of a pro-oxidant environment in the RPE in the presence of Timp3 mutations. To determine if the RPE of Timp3 mutant mice is more susceptible to degeneration when exposed to low levels of oxidative stress, mice were injected with low doses of sodium iodate. The RPE and photoreceptors in Timp3 mutant mice degenerated at low doses of sodium iodate, which had no effect in wildtype control mice. These studies suggest that TIMP3 mutations may result in a dysregulation of pro-oxidant-antioxidant homeostasis in the RPE, leading to RPE degeneration in SFD.


Subject(s)
Macular Degeneration , Oxidative Stress , Retinal Pigment Epithelium , Animals , Humans , Macular Degeneration/genetics , Mice , Mutation , Oxidative Stress/genetics , Retina , Tissue Inhibitor of Metalloproteinases , Tissue Inhibitor of Metalloproteinase-4
2.
Cells ; 9(3)2020 03 04.
Article in English | MEDLINE | ID: mdl-32143276

ABSTRACT

Sorsby's fundus dystrophy (SFD) is an inherited blinding disorder caused by mutations in the tissue inhibitor of metalloproteinase-3 (TIMP3) gene. The SFD pathology of macular degeneration with subretinal deposits and choroidal neovascularization (CNV) closely resembles that of the more common age-related macular degeneration (AMD). The objective of this study was to gain further insight into the molecular mechanism(s) by which mutant TIMP3 induces CNV. In this study we demonstrate that hyaluronan (HA), a large glycosaminoglycan, is elevated in the plasma and retinal pigment epithelium (RPE)/choroid of patients with AMD. Mice carrying the S179C-TIMP3 mutation also showed increased plasma levels of HA as well as accumulation of HA around the RPE in the retina. Human RPE cells expressing the S179C-TIMP3 mutation accumulated HA apically, intracellularly and basally when cultured long-term compared with cells expressing wildtype TIMP3. We recently reported that RPE cells carrying the S179C-TIMP3 mutation have the propensity to induce angiogenesis via basic fibroblast growth factor (FGF-2). We now demonstrate that FGF-2 induces accumulation of HA in RPE cells. These results suggest that the TIMP3-MMP-FGF-2-HA axis may have an important role in the pathogenesis of CNV in SFD and possibly AMD.


Subject(s)
Choroidal Neovascularization/metabolism , Fibroblast Growth Factor 2/metabolism , Macular Degeneration/metabolism , Tissue Inhibitor of Metalloproteinase-3/metabolism , Cells, Cultured , Choroidal Neovascularization/genetics , Humans , Macular Degeneration/genetics , Macular Degeneration/pathology , Mutation/genetics , Retina/metabolism , Retina/pathology
3.
Sci Rep ; 9(1): 17429, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31757977

ABSTRACT

Choroidal neovascularization (CNV) leads to loss of vision in patients with Sorsby Fundus Dystrophy (SFD), an inherited, macular degenerative disorder, caused by mutations in the Tissue Inhibitor of Metalloproteinase-3 (TIMP3) gene. SFD closely resembles age-related macular degeneration (AMD), which is the leading cause of blindness in the elderly population of the Western hemisphere. Variants in TIMP3 gene have recently been identified in patients with AMD. A majority of patients with AMD also lose vision as a consequence of choroidal neovascularization (CNV). Thus, understanding the molecular mechanisms that contribute to CNV as a consequence of TIMP-3 mutations will provide insight into the pathophysiology in SFD and likely the neovascular component of the more commonly seen AMD. While the role of VEGF in CNV has been studied extensively, it is becoming increasingly clear that other factors likely play a significant role. The objective of this study was to test the hypothesis that basic Fibroblast Growth Factor (bFGF) regulates SFD-related CNV. In this study we demonstrate that mice expressing mutant TIMP3 (Timp3S179C/S179C) showed reduced MMP inhibitory activity with an increase in MMP2 activity and bFGF levels, as well as accentuated CNV leakage when subjected to laser injury. S179C mutant-TIMP3 in retinal pigment epithelial (RPE) cells showed increased secretion of bFGF and conditioned medium from these cells induced increased angiogenesis in endothelial cells. These studies suggest that S179C-TIMP3 may promote angiogenesis and CNV via a FGFR-1-dependent pathway by increasing bFGF release and activity.


Subject(s)
Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Fibroblast Growth Factors/metabolism , Macular Degeneration/genetics , Macular Degeneration/metabolism , Mutation , Tissue Inhibitor of Metalloproteinases/genetics , Animals , Biomarkers , DNA Copy Number Variations , Endothelial Cells/metabolism , Extracellular Matrix , Gene Expression , Macular Degeneration/pathology , Mice , Tissue Inhibitor of Metalloproteinase-4
4.
Exp Eye Res ; 184: 30-37, 2019 07.
Article in English | MEDLINE | ID: mdl-30978346

ABSTRACT

A patient with bilateral diffuse uveal melanocytic proliferation (BDUMP) associated with endometrial cancer was treated with plasmapheresis, but failed therapy with progressive serous retinal detachment. We collected plasma before and after plasmapheresis therapy. Our goal was to determine if the cultured melanocyte elongation and proliferation (CMEP) factor and hepatocyte growth factor (HGF) was present in the IgG enriched fraction and understand why our patient failed plasmapheresis therapy. Melanocytes were cultured for 3-5 days in the presence of control medium, unfractionated pre-plasmapheresis BDUMP medium, IgG enriched or IgG depleted BDUMP medium, or unfractionated post-plasmapheresis BDUMP medium. Subretinal fluid was collected from patients with BDUMP and control retinal detachments and analyzed by electropheresis with immunoblotting. Medium with unfractionated BDUMP plasma stimulated melanocyte growth 1.4-1.5 fold compared to control medium on days 3-5 (p < 0.001 for all). Both IgG enriched and IgG depleted BDUMP medium mildly increased melanocyte growth 1.3 fold (p < 0.05 for enriched, p < 0.01 for depleted) compared to control. In comparison, unfractionated BDUMP medium caused a 1.7-fold increase in melanocyte growth, which was significantly more than the enriched (p < 0.01) and depleted (p < 0.05) fractions. Pre-plasmapheresis and post-plasmapheresis unfractionated BDUMP medium equally stimulated melanocyte growth 1.7-fold (p < 0.05) compared to control. HGF was present in IgG depleted, pre-plasmapheresis, and post-plasmapheresis samples, but absent in the IgG enriched fraction. There was no enrichment of IgG in the subretinal fluid from eyes with BDUMP. In conclusion, CMEP factor is not concentrated in the IgG enriched plasma fraction in our patient who failed plasmapheresis therapy. HGF levels have no correlation with melanocyte growth. Because plasmapheresis preferentially removes immunoglobulins from the plasma, our patient responded poorly to plasmapheresis treatment with worsening retinal detachment.


Subject(s)
Adenocarcinoma, Clear Cell/pathology , Endometrial Neoplasms/pathology , Intercellular Signaling Peptides and Proteins/blood , Melanocytes/pathology , Paraneoplastic Syndromes, Ocular/pathology , Uvea/pathology , Adenocarcinoma, Clear Cell/blood , Adenocarcinoma, Clear Cell/therapy , Aged , Cell Proliferation , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Endometrial Neoplasms/blood , Endometrial Neoplasms/therapy , Female , Fluorescein Angiography , Humans , Immunoblotting , Multimodal Imaging , Paraneoplastic Syndromes, Ocular/blood , Paraneoplastic Syndromes, Ocular/therapy , Plasmapheresis , Subretinal Fluid , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL
...