Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 43(11): 2680-2698, 2020 11.
Article in English | MEDLINE | ID: mdl-32885839

ABSTRACT

The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume crop, cultivated both as a green manure and as a source of protein for animal feed and human food production. During its domestication process, numerous agronomic traits were improved, however, only two trait-related genes were identified hitherto, both by linkage mapping. Genome-wide association studies (GWAS), exploiting genomic sequencing, did not select any novel candidate gene. In the present study, an innovative method of 3'-end reduced representation transcriptomic profiling, a massive analysis of cDNA ends, has been used for genotyping of 126 L. angustifolius lines surveyed by field phenotyping. Significant genotype × environment interactions were identified for all phenology and yield traits analysed. Principal component analysis of population structure evidenced European domestication bottlenecks, visualized by clustering of breeding materials and cultivars. GWAS provided contribution towards deciphering vernalization pathway in legumes, and, apart from highlighting known domestication loci (Ku/Julius and mol), designated novel candidate genes for L. angustifolius traits. Early phenology was associated with genes from vernalization, cold-responsiveness and phosphatidylinositol signalling pathways whereas high yield with genes controlling photosynthesis performance and abiotic stress (drought or heat) tolerance. PCR-based toolbox was developed and validated to enable tracking desired alleles in marker-assisted selection. Narrow-leafed lupin was genotyped with an innovative method of transcriptome profiling and phenotyped for phenology, growth and yield traits in field. Early phenology was found associated with genes from cold-response, vernalization and phosphatidylinositol signalling pathways, whereas high yield with genes running photosystem II and drought or heat stress response. Key loci were supplied with PCR-based toolbox for marker-assisted selection.


Subject(s)
Gene Expression Profiling/methods , Genes, Plant/genetics , Lupinus/genetics , Domestication , Genes, Plant/physiology , Genetic Association Studies , Genetic Markers/genetics , Genome-Wide Association Study , Genotyping Techniques , Lupinus/growth & development , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Sequence Analysis, DNA
2.
Int J Mol Sci ; 20(22)2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31726789

ABSTRACT

The last century has witnessed rapid domestication of the narrow-leafed lupin (Lupinus angustifolius L.) as a grain legume crop, exploiting discovered alleles conferring low-alkaloid content (iucundus), vernalization independence (Ku and Julius), and reduced pod shattering (lentus and tardus). In this study, a L. angustifolius mapping population was subjected to massive analysis of cDNA ends (MACE). The MACE yielded 4185 single nucleotide polymorphism (SNP) markers for linkage map improvement and 30,595 transcriptomic profiles for expression quantitative trait loci (eQTL) mapping. The eQTL highlighted a high number of cis- and trans-regulated alkaloid biosynthesis genes with gene expression orchestrated by a regulatory agent localized at iucundus locus, supporting the concept that ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR RAP2-7 may control low-alkaloid phenotype. The analysis of Ku shed light on the vernalization response via FLOWERING LOCUS T and FD regulon in L. angustifolius, providing transcriptomic evidence for the contribution of several genes acting in C-repeat binding factor (CBF) cold responsiveness and in UDP-glycosyltransferases pathways. Research on lentus selected a DUF1218 domain protein as a candidate gene controlling the orientation of the sclerified endocarp and a homolog of DETOXIFICATION14 for purplish hue of young pods. An ABCG transporter was identified as a hypothetical contributor to sclerenchyma fortification underlying tardus phenotype.


Subject(s)
Chromosome Mapping , Domestication , Gene Expression Regulation, Plant/physiology , Genes, Plant , Lupinus , Plant Leaves , Plant Proteins , Quantitative Trait Loci , Lupinus/genetics , Lupinus/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics
3.
Genes (Basel) ; 10(4)2019 04 01.
Article in English | MEDLINE | ID: mdl-30939837

ABSTRACT

Plant genome evolution can be very complex and challenging to describe, even within a genus. Mechanisms that underlie genome variation are complex and can include whole-genome duplications, gene duplication and/or loss, and, importantly, multiple chromosomal rearrangements. Lupins (Lupinus) diverged from other legumes approximately 60 mya. In contrast to New World lupins, Old World lupins show high variability not only for chromosome numbers (2n = 32⁻52), but also for the basic chromosome number (x = 5⁻9, 13) and genome size. The evolutionary basis that underlies the karyotype evolution in lupins remains unknown, as it has so far been impossible to identify individual chromosomes. To shed light on chromosome changes and evolution, we used comparative chromosome mapping among 11 Old World lupins, with Lupinusangustifolius as the reference species. We applied set of L.angustifolius-derived bacterial artificial chromosome clones for fluorescence in situ hybridization. We demonstrate that chromosome variations in the species analyzed might have arisen from multiple changes in chromosome structure and number. We hypothesize about lupin karyotype evolution through polyploidy and subsequent aneuploidy. Additionally, we have established a cytogenomic map of L.angustifolius along with chromosome markers that can be used for related species to further improve comparative studies of crops and wild lupins.


Subject(s)
Evolution, Molecular , Genome, Plant/genetics , Karyotype , Lupinus/genetics , Chromosome Aberrations , Chromosome Mapping , Gene Duplication/genetics , Genetic Linkage/genetics , In Situ Hybridization, Fluorescence , Karyotyping , Polyploidy , Synteny/genetics
4.
Int J Mol Sci ; 19(8)2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30115849

ABSTRACT

In this article, the effects of cold on the development of Lupine angustifolius and the possibility of mitigating it, via seed hydropriming or pre-treatment with butenolide (10-6 M⁻10-4 M), are investigated in two cultivars, differing in their ability to germinate at low temperature. Physiological background of plant development after cold stress was investigated in imbibed seeds. For the first four weeks, the seedlings grew at 7 °C or 13 °C. Seeds well germinating at 7 °C demonstrated higher activity of α-amylase and higher levels of gibberellins, IAA and kinetin. Germination ability at low temperature correlated with dehydrogenase activity and membrane permeability. Seed pre-treatment improved germination at low temperature by decreasing abscisic acid content. Seed hydropriming alleviated cold effects on plant development rate and yield, while butenolide accelerated vegetative development but delayed the generative phase. Potential seed yield may be predicted based on the seed germination vigour and the photosynthetic efficiency measured before flowering.


Subject(s)
4-Butyrolactone/analogs & derivatives , Cold Temperature , Lupinus/growth & development , Plant Leaves/anatomy & histology , Seeds/physiology , 4-Butyrolactone/pharmacology , Biomass , Chlorophyll/metabolism , Chlorophyll A , Electrolytes/metabolism , Fluorescence , Germination/drug effects , Kinetics , Lupinus/drug effects , Lupinus/enzymology , Oxidoreductases/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/drug effects , Seeds/drug effects , Temperature , Time Factors , alpha-Amylases/metabolism
5.
Int J Mol Sci ; 19(4)2018 Mar 26.
Article in English | MEDLINE | ID: mdl-29587459

ABSTRACT

Seed imbibition under cold temperature is dangerous when dry seeds have relatively low water content. The aim of this study was to investigate germination of 20 lines/cultivars of narrow-leaf lupine at 7 °C (cold) and 13 °C (control) under the influence of smoke water and following seed hydropriming for 3 h at 20 °C. The efficacy of individual treatments was examined with regard to seed protection during low-temperature germination. Based on seed germination, vigour at cold was evaluated four days after sowing by means of hypocotyl length, the studied lines/cultivars were divided into three groups with low, high and very high germination rates. Germination vigour correlated with cell membrane permeability, dehydrogenase activity and abscisic acid (ABA) content and was analysed in the seeds one day after sowing. Gibberellin content did not correlate with germination vigour. The seeds of weakly germinating lines/cultivars had the highest cell permeability and ABA content as well as the lowest amylolytic activity at both studied temperatures. Additionally, the vigour of weakly germinating seeds at 7 °C correlated with dehydrogenase activity. Three-hour hydropriming was the most effective for seed germination under cold due to reduced cell membrane permeability and ABA level. Stimulating effects of smoke water on germination under cold could be explained by enhanced dehydrogenase activity.


Subject(s)
Adaptation, Physiological , Germination , Lupinus/physiology , Abscisic Acid/pharmacology , Cell Membrane Permeability , Cold Temperature , Gibberellins/metabolism , Lupinus/metabolism , Water
6.
Sci Rep ; 7(1): 15335, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29127429

ABSTRACT

White lupin (Lupinus albus L.) is a valuable source of seed protein, carbohydrates and oil, but requires genetic improvement to attain its agronomic potential. This study aimed to (i) develop a new high-density consensus linkage map based on new, transcriptome-anchored markers; (ii) map four important agronomic traits, namely, vernalization requirement, seed alkaloid content, and resistance to anthracnose and Phomopsis stem blight; and, (iii) define regions of synteny between the L. albus and narrow-leafed lupin (L. angustifolius L.) genomes. Mapping of white lupin quantitative trait loci (QTLs) revealed polygenic control of vernalization responsiveness and anthracnose resistance, as well as a single locus regulating seed alkaloid content. We found high sequence collinearity between white and narrow-leafed lupin genomes. Interestingly, the white lupin QTLs did not correspond to previously mapped narrow-leafed lupin loci conferring vernalization independence, anthracnose resistance, low alkaloids and Phomopsis stem blight resistance, highlighting different genetic control of these traits. Our suite of allele-sequenced and PCR validated markers tagging these QTLs is immediately applicable for marker-assisted selection in white lupin breeding. The consensus map constitutes a platform for synteny-based gene cloning approaches and can support the forthcoming white lupin genome sequencing efforts.


Subject(s)
Chromosome Mapping , Genetic Linkage , Genome, Plant , Lupinus/genetics , Plant Leaves/genetics , Quantitative Trait Loci , Plant Breeding
7.
Plant Sci ; 264: 149-167, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28969795

ABSTRACT

Isoflavone synthase (IFS) is the key enzyme of isoflavonoid biosynthesis. IFS genes were identified in numerous species, although their evolutionary patterns have not yet been reconstructed. To address this issue, we performed structural and functional genomic analysis. Narrow leafed lupin, Lupinus angustifolius L., was used as a reference species for the genus, because it has the most developed molecular tools available. Nuclear genome BAC library clones carrying IFS homologs were localized by linkage mapping and fluorescence in situ hybridization in three chromosome pairs. Annotation of BAC, scaffold and transcriptome sequences confirmed the presence of three full-length IFS genes in the genome. Microsynteny analysis and Bayesian inference provided clear evidence that IFS genes in legumes have evolved by lineage-specific whole-genome and tandem duplications. Gene expression profiling and RNA-seq data mining showed that the vast majority of legume IFS copies have maintained their transcriptional activity. L. angustifolius IFS homologs exhibited organ-specific expression patterns similar to those observed in other Papilionoideae. Duplicated lupin IFS homologs retained non-negligible levels of substitutions in conserved motifs, putatively due to positive selection acting during early evolution of the genus, before the whole-genome duplication. Strong purifying selection preserved newly arisen IFS duplicates from further nonsynonymous changes.


Subject(s)
Lupinus/enzymology , Multigene Family , Oxygenases/genetics , Bayes Theorem , Chromosome Mapping , Evolution, Molecular , Gene Duplication , Gene Expression Profiling , Genomics , In Situ Hybridization, Fluorescence , Lupinus/genetics , Plant Proteins/genetics , Sequence Alignment , Synteny , Transcriptome
8.
New Phytol ; 213(1): 220-232, 2017 01.
Article in English | MEDLINE | ID: mdl-27418400

ABSTRACT

Adaptation of Lupinus angustifolius (narrow-leafed lupin) to cropping in southern Australian and northern Europe was transformed by a dominant mutation (Ku) that removed vernalization requirement for flowering. The Ku mutation is now widely used in lupin breeding to confer early flowering and maturity. We report here the identity of the Ku mutation. We used a range of genetic, genomic and gene expression approaches to determine whether Flowering Locus T (FT) homologues are associated with the Ku locus. One of four FT homologues present in the narrow-leafed lupin genome, LanFTc1, perfectly co-segregated with the Ku locus in a reference mapping population. Expression of LanFTc1 in the ku (late-flowering) parent was strongly induced by vernalization, in contrast to the Ku (early-flowering) parent, which showed constitutively high LanFTc1 expression. Co-segregation of this expression phenotype with the LanFTc1 genotype indicated that the Ku mutation impairs cis-regulation of LanFTc1. Sequencing of LanFTc1 revealed a 1.4-kb deletion in the promoter region, which was perfectly predictive of vernalization response in 216 wild and domesticated accessions. Linkage disequilibrium rapidly decayed around LanFTc1, suggesting that this deletion caused the loss of vernalization response. This is the first time a legume FTc subclade gene has been implicated in the vernalization response.


Subject(s)
Flowers/physiology , Gene Expression Regulation, Plant , Lupinus/physiology , Plant Leaves/physiology , Plant Proteins/genetics , Promoter Regions, Genetic , Sequence Deletion , Sequence Homology, Amino Acid , Arabidopsis/genetics , Base Sequence , Binding Sites , Genes, Plant , Genetic Markers , INDEL Mutation/genetics , Linkage Disequilibrium/genetics , Lupinus/genetics , Nucleotide Motifs/genetics , Phylogeny , Plant Proteins/metabolism , Polymorphism, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism
9.
BMC Genomics ; 17(1): 820, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27769166

ABSTRACT

BACKGROUND: The Arabidopsis FLOWERING LOCUS T (FT) gene, a member of the phosphatidylethanolamine binding protein (PEBP) family, is a major controller of flowering in response to photoperiod, vernalization and light quality. In legumes, FT evolved into three, functionally diversified clades, FTa, FTb and FTc. A milestone achievement in narrow-leafed lupin (Lupinus angustifolius L.) domestication was the loss of vernalization responsiveness at the Ku locus. Recently, one of two existing L. angustifolius homologs of FTc, LanFTc1, was revealed to be the gene underlying Ku. It is the first recorded involvement of an FTc homologue in vernalization. The evolutionary basis of this phenomenon in lupin has not yet been deciphered. RESULTS: Bacterial artificial chromosome (BAC) clones carrying LanFTc1 and LanFTc2 genes were localized in different mitotic chromosomes and constituted sequence-specific landmarks for linkage groups NLL-10 and NLL-17. BAC-derived superscaffolds containing LanFTc genes revealed clear microsyntenic patterns to genome sequences of nine legume species. Superscaffold-1 carrying LanFTc1 aligned to regions encoding one or more FT-like genes whereas superscaffold-2 mapped to a region lacking such a homolog. Comparative mapping of the L. angustifolius genome assembly anchored to linkage map localized superscaffold-1 in the middle of a 15 cM conserved, collinear region. In contrast, superscaffold-2 was found at the edge of a 20 cM syntenic block containing highly disrupted collinearity at the LanFTc2 locus. 118 PEBP-family full-length homologs were identified in 10 legume genomes. Bayesian phylogenetic inference provided novel evidence supporting the hypothesis that whole-genome and tandem duplications contributed to expansion of PEBP-family genes in legumes. Duplicated genes were subjected to strong purifying selection. Promoter analysis of FT genes revealed no statistically significant sequence similarity between duplicated copies; only RE-alpha and CCAAT-box motifs were found at conserved positions and orientations. CONCLUSIONS: Numerous lineage-specific duplications occurred during the evolution of legume PEBP-family genes. Whole-genome duplications resulted in the origin of subclades FTa, FTb and FTc and in the multiplication of FTa and FTb copy number. LanFTc1 is located in the region conserved among all main lineages of Papilionoideae. LanFTc1 is a direct descendant of ancestral FTc, whereas LanFTc2 appeared by subsequent duplication.


Subject(s)
Lupinus/genetics , Multigene Family , Phosphatidylethanolamine Binding Protein/genetics , Chromosome Mapping , Evolution, Molecular , Gene Expression Profiling , Genetic Linkage , Genome, Plant , Genomics , Lupinus/classification , Phylogeny , Promoter Regions, Genetic , Synteny
10.
Front Plant Sci ; 7: 1152, 2016.
Article in English | MEDLINE | ID: mdl-27516770

ABSTRACT

Insight into plant genomes at the cytomolecular level provides useful information about their karyotype structure, enabling inferences about taxonomic relationships and evolutionary origins. The Old World lupins (OWL) demonstrate a high level of genomic diversification involving variation in chromosome numbers (2n = 32-52), basic chromosome numbers (x = 5-7, 9, 13) and in nuclear genome size (2C DNA = 0.97-2.68 pg). Lupins comprise both crop and wild species and provide an intriguing system to study karyotype evolution. In order to investigate lupin chromosome structure, heterologous FISH was used. Sixteen BACs that had been generated as chromosome markers for the reference species, Lupinus angustifolius, were used to identify chromosomes in the wild species and explore karyotype variation. While all "single-locus" in L. angustifolius, in the wild lupins these clones proved to be "single-locus," "single-locus" with additional signals, "repetitive" or had no detectable BAC-FISH signal. The diverse distribution of the clones in the targeted genomes suggests a complex evolution history, which possibly involved multiple chromosomal changes such as fusions/fissions and repetitive sequence amplification. Twelve BACs were sequenced and we found numerous transposable elements including DNA transposons as well as LTR and non-LTR retrotransposons with varying quantity and composition among the different lupin species. However, at this preliminary stage, no correlation was observed between the pattern of BAC-FISH signals and the repeat content in particular BACs. Here, we describe the first BAC-based chromosome-specific markers for the wild species: L. cosentinii, L. cryptanthus, L. pilosus, L. micranthus and one New World lupin, L. multiflorus. These BACs could constitute the basis for an assignment of the chromosomal and genetic maps of other lupins, e.g., L. albus and L. luteus. Moreover, we identified karyotype variation that helps illustrate the relationships between the lupins and the extensive cytological diversity within this group. In this study we premise that lupin genomes underwent at least two rounds of fusion and fission events resulting in the reduction in chromosome number from 2n = 52 through 2n = 40 to 2n = 32, followed by chromosome number increment to 2n = 42.

11.
Front Plant Sci ; 6: 268, 2015.
Article in English | MEDLINE | ID: mdl-25954293

ABSTRACT

Lupins, like other legumes, have a unique biosynthesis scheme of 5-deoxy-type flavonoids and isoflavonoids. A key enzyme in this pathway is chalcone isomerase (CHI), a member of CHI-fold protein family, encompassing subfamilies of CHI1, CHI2, CHI-like (CHIL), and fatty acid-binding (FAP) proteins. Here, two Lupinus angustifolius (narrow-leafed lupin) CHILs, LangCHIL1 and LangCHIL2, were identified and characterized using DNA fingerprinting, cytogenetic and linkage mapping, sequencing and expression profiling. Clones carrying CHIL sequences were assembled into two contigs. Full gene sequences were obtained from these contigs, and mapped in two L. angustifolius linkage groups by gene-specific markers. Bacterial artificial chromosome fluorescence in situ hybridization approach confirmed the localization of two LangCHIL genes in distinct chromosomes. The expression profiles of both LangCHIL isoforms were very similar. The highest level of transcription was in the roots of the third week of plant growth; thereafter, expression declined. The expression of both LangCHIL genes in leaves and stems was similar and low. Comparative mapping to reference legume genome sequences revealed strong syntenic links; however, LangCHIL2 contig had a much more conserved structure than LangCHIL1. LangCHIL2 is assumed to be an ancestor gene, whereas LangCHIL1 probably appeared as a result of duplication. As both copies are transcriptionally active, questions arise concerning their hypothetical functional divergence. Screening of the narrow-leafed lupin genome and transcriptome with CHI-fold protein sequences, followed by Bayesian inference of phylogeny and cross-genera synteny survey, identified representatives of all but one (CHI1) main subfamilies. They are as follows: two copies of CHI2, FAPa2 and CHIL, and single copies of FAPb and FAPa1. Duplicated genes are remnants of whole genome duplication which is assumed to have occurred after the divergence of Lupinus, Arachis, and Glycine.

12.
Plant Mol Biol Report ; 33: 84-101, 2015.
Article in English | MEDLINE | ID: mdl-25620837

ABSTRACT

The narrow-leafed lupin (Lupinus angustifolius) was recently considered as a legume reference species. Genetic resources have been developed, including a draft genome sequence, linkage maps, nuclear DNA libraries, and cytogenetic chromosome-specific landmarks. Here, we used a complex approach, involving DNA fingerprinting, sequencing, genetic mapping, and molecular cytogenetics, to localize and analyze L. angustifolius gene-rich regions (GRRs). A L. angustifolius genomic bacterial artificial chromosome (BAC) library was screened with short sequence repeat (SSR)-based probes. Selected BACs were fingerprinted and assembled into contigs. BAC-end sequence (BES) annotation allowed us to choose clones for sequencing, targeting GRRs. Additionally, BESs were aligned to the scaffolds of the genome sequence. The genetic map was supplemented with 35 BES-derived markers, distributed in 14 linkage groups and tagging 37 scaffolds. The identified GRRs had an average gene density of 19.6 genes/100 kb and physical-to-genetic distance ratios of 11 to 109 kb/cM. Physical and genetic mapping was supported by multi-BAC-fluorescence in situ hybridization (FISH), and five new linkage groups were assigned to the chromosomes. Syntenic links to the genome sequences of five legume species (Medicago truncatula, Glycine max, Lotus japonicus, Phaseolus vulgaris, and Cajanus cajan) were identified. The comparative mapping of the two largest lupin GRRs provides novel evidence for ancient duplications in all of the studied species. These regions are conserved among representatives of the main clades of Papilionoideae. Furthermore, despite the complex evolution of legumes, some segments of the nuclear genome were not substantially modified and retained their quasi-ancestral structures. Cytogenetic markers anchored in these regions constitute a platform for heterologous mapping of legume genomes.

13.
BMC Genomics ; 14: 79, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23379841

ABSTRACT

BACKGROUND: The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume species with a relatively compact genome. The species has 2n = 40 chromosomes and its genome size is 960 Mbp/1C. During the last decade, L. angustifolius genomic studies have achieved several milestones, such as molecular-marker development, linkage maps, and bacterial artificial chromosome (BAC) libraries. Here, these resources were integratively used to identify and sequence two gene-rich regions (GRRs) of the genome. RESULTS: The genome was screened with a probe representing the sequence of a microsatellite fragment length polymorphism (MFLP) marker linked to Phomopsis stem blight resistance. BAC clones selected by hybridization were subjected to restriction fingerprinting and contig assembly, and 232 BAC-ends were sequenced and annotated. BAC fluorescence in situ hybridization (BAC-FISH) identified eight single-locus clones. Based on physical mapping, cytogenetic localization, and BAC-end annotation, five clones were chosen for sequencing. Within the sequences of clones that hybridized in FISH to a single-locus, two large GRRs were identified. The GRRs showed strong and conserved synteny to Glycine max duplicated genome regions, illustrated by both identical gene order and parallel orientation. In contrast, in the clones with dispersed FISH signals, more than one-third of sequences were transposable elements. Sequenced, single-locus clones were used to develop 12 genetic markers, increasing the number of L. angustifolius chromosomes linked to appropriate linkage groups by five pairs. CONCLUSIONS: In general, probes originating from MFLP sequences can assist genome screening and gene discovery. However, such probes are not useful for positional cloning, because they tend to hybridize to numerous loci. GRRs identified in L. angustifolius contained a low number of interspersed repeats and had a high level of synteny to the genome of the model legume G. max. Our results showed that not only was the gene nucleotide sequence conserved between soybean and lupin GRRs, but the order and orientation of particular genes in syntenic blocks was homologous, as well. These findings will be valuable to the forthcoming sequencing of the lupin genome.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Genome, Plant , Lupinus/genetics , Chromosome Mapping , Contig Mapping , Cytogenetics , DNA Transposable Elements/genetics , Gene Library , Genetic Linkage , Genetic Markers/genetics , In Situ Hybridization, Fluorescence , Nucleic Acid Hybridization , Sequence Analysis, DNA
14.
Plant Cell Rep ; 31(3): 585-95, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22246107

ABSTRACT

Current immunisation programmes against hepatitis B virus (HBV) increasingly often involve novel tri-component vaccines containing-together with the small (S-HBsAg)-also medium and large surface antigens of HBV (M- and L-HBsAg). Plants producing all HBsAg proteins can be a source of components for a potential oral 'triple' anti-HBV vaccine. The objective of the presented research was to study the potential of M/L-HBsAg expression in leaf tissue and conditions of its processing for a prototype oral vaccine. Tobacco and lettuce carrying M- or L-HBsAg genes and resistant to the herbicide glufosinate were engineered and integration of the transgenes was verified by PCR and Southern hybridizations. M- and L-HBsAg expression was confirmed by Western blot and assayed by ELISA at the level of micrograms per g of fresh weight. The antigens displayed a common S domain and characteristic domains preS2 and preS1 and were assembled into virus-like particles (VLPs). Leaf tissues containing M- and L-HBsAg were lyophilised to produce a starting material of an orally administered vaccine formula. The antigens were distinctly sensitive to freeze-drying conditions and storage temperature, in the aspect of stability of S and preS domains and formation of multimeric particles. Efficiency of lyophilisation and storage depended also on the initial antigen content in plant tissue, yet M-HBsAg appeared to be approximately 1.5-2 times more stable than L-HBsAg. The results of the study provide indications concerning the preparation of two other constituents, next to S-HBsAg, for a plant-derived prototype oral tri-component vaccine against hepatitis B.


Subject(s)
Hepatitis B Surface Antigens/metabolism , Hepatitis B Vaccines/administration & dosage , Hepatitis B virus/immunology , Hepatitis B/prevention & control , Lactuca/metabolism , Nicotiana/metabolism , Freeze Drying , Hepatitis B Surface Antigens/analysis , Hepatitis B Surface Antigens/genetics , Lactuca/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Preparations , Plants, Genetically Modified , Protein Stability , Temperature , Nicotiana/genetics
15.
J Hered ; 102(2): 228-36, 2011.
Article in English | MEDLINE | ID: mdl-20947695

ABSTRACT

The legume genus, Lupinus, has many notable properties that make it interesting from a scientific perspective, including its basal position in the evolution of Papilionoid legumes. As the most economically important legume species, L. angustifolius L. (narrow-leafed lupin) has been subjected to much genetic analysis including linkage mapping and genomic library development. Cytogenetic analysis has been hindered by the large number of small morphologically uniform chromosomes (2n = 40). Here, we present a significant advance: the development of chromosome-specific cytogenetic markers and assignment of the first genetic linkage groups (LGs) to chromosomal maps of L. angustifolius using the bacterial artificial chromosome (BAC)-fluorescence in situ hybridization approach. Twelve clones produced single-locus signals that "landed" on 7 different chromosomes. Based on BAC-end sequences of those clones, genetic markers were generated. Eight clones localized on 3 chromosomes, allowed these chromosomes to be assigned to 3 LGs. An additional single-locus clone may be useful to combine an unassigned group (Cluster-2) with main LGs. This work provides a strong foundation for future identification of all chromosomes with specific markers and for complete integration of narrow-leafed lupin LGs. This resource will greatly facilitate the chromosome assignment and ordering of sequence contigs in sequencing the L. angustifolius genome.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Genetic Linkage , Lupinus/genetics , Chromosomes, Artificial, Bacterial , Genetic Markers , Genomic Library , In Situ Hybridization, Fluorescence , Molecular Sequence Data
16.
J Appl Genet ; 52(2): 125-36, 2011 May.
Article in English | MEDLINE | ID: mdl-21107787

ABSTRACT

Efficient immunization against hepatitis B virus (HBV) and other pathogens with plant-based oral vaccines requires appropriate plant expressors and the optimization of vaccine compositions and administration protocols. Previous immunization studies were mainly based on a combination of the injection of a small surface antigen of HBV (S-HBsAg) and the feeding with raw tissue containing the antigen, supplemented with an adjuvant, and coming from plants conferring resistance to kanamycin. The objective of this study was to develop a prototype oral vaccine formula suitable for human immunization. Herbicide-resistant lettuce was engineered, stably expressing through progeny generation micrograms of S-HBsAg per g of fresh weight and formed into virus-like particles (VLPs). Lyophilized tissue containing a relatively low, 100-ng VLP-assembled antigen dose, administered only orally to mice with a long, 60-day interval between prime and boost immunizations and without exogenous adjuvant, elicited mucosal and systemic humoral anti-HBs responses at the nominally protective level. Lyophilized tissue was converted into tablets, which preserved S-HBsAg content for at least one year of room temperature storage. The results of the study provide indications on immunization methodology using a durable, efficacious, and convenient plant-derived prototype oral vaccine against hepatitis B.


Subject(s)
Hepatitis B Surface Antigens/immunology , Hepatitis B virus/immunology , Hepatitis B/prevention & control , Lactuca/genetics , Recombinant Proteins/immunology , Vaccination , Administration, Oral , Aminobutyrates/pharmacology , Animals , Dose-Response Relationship, Immunologic , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum/virology , Feces/chemistry , Freeze Drying , Hepatitis B Surface Antigens/biosynthesis , Hepatitis B Vaccines/administration & dosage , Hepatitis B virus/ultrastructure , Herbicide Resistance , Herbicides/pharmacology , Humans , Immunity, Humoral , Immunoglobulin A, Secretory/blood , Lactuca/immunology , Lactuca/metabolism , Lactuca/virology , Mice , Mice, Inbred BALB C , Plant Leaves/immunology , Plant Leaves/ultrastructure , Plant Leaves/virology , Plants, Genetically Modified/immunology , Recombinant Proteins/biosynthesis , Vaccines, Edible/administration & dosage
17.
DNA Res ; 17(2): 73-83, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20133394

ABSTRACT

We have developed a dense reference genetic map of Lupinus angustifolius (2n = 40) based on a set of 106 publicly available recombinant inbred lines derived from a cross between domesticated and wild parental lines. The map comprised 1090 loci in 20 linkage groups and three small clusters, drawing together data from several previous mapping publications plus almost 200 new markers, of which 63 were gene-based markers. A total of 171 mainly gene-based, sequence-tagged site loci served as bridging points for comparing the Lu. angustifolius genome with the genome sequence of the model legume, Lotus japonicus via BLASTn homology searching. Comparative analysis indicated that the genomes of Lu. angustifolius and Lo. japonicus are highly diverged structurally but with significant regions of conserved synteny including the region of the Lu. angustifolius genome containing the pod-shatter resistance gene, lentus. We discuss the potential of synteny analysis for identifying candidate genes for domestication traits in Lu. angustifolius and in improving our understanding of Fabaceae genome evolution.


Subject(s)
Genome, Plant , Genomics/methods , Lotus/genetics , Lupinus/genetics , Chromosome Mapping , Chromosomes, Plant , DNA, Plant/chemistry , Databases, Genetic , Sequence Alignment , Synteny
18.
J Appl Genet ; 49(3): 213-20, 2008.
Article in English | MEDLINE | ID: mdl-18670056

ABSTRACT

The aim of the study was to verify the similarity of 13 species and 5 cultivars of ornamental alliums and classify them into groups based on morphological and isozyme variation. The work embraced: Allium aflatunense, A. caeruleum, A. christophii, A. giganteum, A. karataviense, A. moly, A. nigrum, A. pyrenaicum, A. rosenbachianum, A. schubertii, A. siculum (syn. Nectaroscordum siculum), A. sphaerocephalon, A. strictum, A. stipitatum 'Album', A. 'Ivory Queen', A. 'Lucy Ball', A. 'Mont Blanc', and A. 'Purple Sensation'. Scape length, inflorescence diameter, and flowering period were recorded. Isozyme marker polymorphism was assessed by starch gel electrophoresis. Eight polymorphic isozyme systems (AAT, GPI, PGM, ALAT, ACP, DIAP, ALDO, PGD) were selected from 16 analysed in the taxa. Besides the differences between the taxa, the isozymes revealed intraspecific polymorphism in 5 systems. A total of 37 markers were obtained and used for dendrogram construction. The most similar taxa were A. karataviense with A. 'Ivory Queen', and A. karataviense with A. christophii (similarity level 0.78). A high similarity of 11 taxa belonging to one group (A. aflatunense, A. christophii, A. giganteum, A. karataviense, A. nigrum, A. schubertii, A. 'Ivory Queen', A. 'Lucy Ball', A. stipitatum 'Album', A. 'Mont Blanc', A. 'Purple Sensation') suggested that this group could be identified with the subgenus Melanocrommyum.


Subject(s)
Allium/genetics , Genetic Variation , Isoenzymes/genetics , Allium/classification , Microsatellite Repeats , Phylogeny , Polymorphism, Genetic
19.
Cell Mol Biol Lett ; 12(1): 16-24, 2007.
Article in English | MEDLINE | ID: mdl-17103086

ABSTRACT

Two molecular cytogenetics methods, PRINS (primed in situ DNA labeling) and C-PRINS (cycling PRINS), were optimized for the physical mapping of several types of DNA sequences on the mitotic chromosomes of the narrow-leafed lupin (Lupinus angustifolius L.). The fragment of the FokI element from Vicia faba was localised by indirect PRINS reaction. Two other sequences, fragments of the coding sequences of L. luteus and of L. angustifolius, were localised by indirect C-PRINS. These techniques are faster and more sensitive than FISH, and they allowed the mapping of short DNA fragments. The data obtained shows that both types of PRINS are valuable tools for chromosome identification in lupin.


Subject(s)
Genome, Plant/genetics , Lupinus/genetics , Physical Chromosome Mapping/methods , Primed In Situ Labeling/methods , Chromosomes, Plant/metabolism , Metaphase
20.
Cell Mol Biol Lett ; 11(3): 396-407, 2006.
Article in English | MEDLINE | ID: mdl-16847554

ABSTRACT

The narrow-leafed lupin possesses valuable traits for environment-friendly agriculture and for the production of unconventional agricultural products. Despite various genetic and environmental studies, the breeding of improved cultivars has been slow due to the limited knowledge of its genomic structure. Further advances in genomics require, among other things, the availability of a genomic DNA library with large inserts. We report here on the construction of the first DNA library cloned in a BAC (bacterial artificial chromosome) vector from diploid Lupinus angustifolius L. cv. Sonet. The high molecular weight DNA used for its preparation was isolated from interphase nuclei that were purified by flow cytometry. The library comprises 55,296 clones and is ordered in 144x384-well microtitre plates. With an average insert size of 100 kb, the library represents six haploid genome equivalents. Thanks to the purification of the nuclei by flow cytometry, contamination with chloroplast DNA and mitochondrial DNA was negligible. The availability of a BAC library opens avenues for the development of a physical contig map and positional gene cloning, as well as for the analysis of the plant's genome structure and evolution.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Gene Library , Lupinus/genetics , Clone Cells , Electrophoresis, Gel, Pulsed-Field , Mitochondria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...