Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 48(3): 654-659, 2019 May.
Article in English | MEDLINE | ID: mdl-31180427

ABSTRACT

Phosphorus runoff from agricultural land to surface water bodies, such as the Great Lakes, is an important environmental concern. Soil amendments, such as gypsum, may alter the chemistry of the soil solution to reduce the amount of water-soluble P (WSP) available for loss to runoff, and as such, the NRCS now recommends gypsum application as a Conservation Practice Standard (Code 333) for improving water quality. Interest in gypsum use has also increased as availability has increased from production of flue gas desulfurization (FGD) gypsum at many coal-burning power plants throughout the United States. This study tested three rates of unincorporated, surface-broadcast FGD gypsum application at 23 field sites in Wisconsin. The optimal rate for reducing WSP concentration and the relationship between selected soil properties and the beneficial effect of FGD gypsum application were evaluated. The FGD gypsum reduced WSP ( < 0.0001), with a significant effect compared with the control at the lowest tested rate of 1120 kg ha at 5 of the 23 sites. Few other sites saw a significant benefit. Correlation indicated that sites showing a beneficial reduction of WSP from FGD gypsum application were those with greater soil test P ( = 0.0002) and lower cation exchange capacity ( = 0.0087) values.


Subject(s)
Calcium Sulfate , Soil , Phosphorus , Water , Wisconsin
2.
J Environ Qual ; 47(5): 1284-1292, 2018 09.
Article in English | MEDLINE | ID: mdl-30272800

ABSTRACT

Gypsum has a long history as a soil amendment. Information on how flue gas desulfurization (FGD) gypsum affects soil, water, and plant properties across a range of climates and soils is lacking. We conducted a meta-analysis using data from 10 field sites in the United States (Alabama, Arkansas, Indiana, New Mexico, North Dakota, Ohio, and Wisconsin). Each site used three rates each of mined and FGD gypsums plus an untreated control treatment. Gypsum rates included a presumed optimal agronomic rate plus one rate lower and one rate higher than the optimal. Gypsum was applied once at the beginning of each study, and then data were collected for 2 to 3 yr. The meta-analyses used response ratios () calculated by dividing the treatment value by the control value for crop yield or for each measured element in plant, soil, and vadose water. These values were tested for their significance with values. Most values varied only slightly from 1.00. Gypsum significantly changed more values from 1.00 for vadose water than for soil or crop tissue in terms of numbers of elements affected (11 for water, 7 for soil, and 8 for crop tissue). The highest value for soil was 1.57 (Ca) which was similar for both mined and FGD gypsum, for crop tissue was 1.46 (Sr) for mined gypsum, and for vadose water was 4.22 (S) for FGD gypsum. The large increase in Ca and S is often a desired response to gypsum application. Lowest values occurred in crop tissue for Mg (0.89) with FGD gypsum and for Ni (0.92 or 0.93) with both gypsums. Although some sites showed crop yield responses to gypsum, the overall mean values for mined gypsum (0.987) and for FGD gypsum (1.00) were not significantly different from 1.00 in this short-term study.


Subject(s)
Agriculture/methods , Calcium Sulfate/chemistry , Conservation of Natural Resources , Fertilizers , Soil Pollutants/chemistry , Plants , Soil/chemistry , United States
3.
J Environ Qual ; 43(1): 263-72, 2014 Jan.
Article in English | MEDLINE | ID: mdl-25602559

ABSTRACT

Mined gypsum has been beneficially used for many years as an agricultural amendment. A large amount of flue gas desulfurization (FGD) gypsum is produced by removal of SO from flue gas streams when fuels with high S content are burned. The FGD gypsum, similar to mined gypsum, can enhance crop production. However, information is lacking concerning the potential environmental impacts of trace metals, especially Hg, in the FGD gypsum. Flue gas desulfurization and mined gypsums were evaluated to determine their ability to affect concentrations of Hg and other trace elements in soils and earthworms. The study was conducted at four field sites across the United States (Ohio, Indiana, Alabama, and Wisconsin). The application rates of gypsums ranged from 2.2 Mg ha in Indiana to 20 Mg ha in Ohio and Alabama. These rates are 2 to 10 times higher than typically recommended. The lengths of time from gypsum application to soil and earthworm sampling were 5 and 18 mo in Ohio, 6 mo in Indiana, 11 mo in Alabama, and 4 mo in Wisconsin. Earthworm numbers and biomass were decreased by FGD and mined gypsums in Ohio. Among all the elements examined, Hg was slightly increased in soils and earthworms in the FGD gypsum treatments compared with the control and the mined gypsum treatments. The differences were not statistically significant except for the Hg concentration in the soil at the Wisconsin site. Selenium in earthworms in the FGD gypsum treatments was statistically higher than in the controls but not higher than in the mined gypsum treatments at the Indiana and Wisconsin sites. Bioaccumulation factors for nondepurated earthworms were statistically similar or lower for the FGD gypsum treatments compared with the controls for all elements. Use of FGD gypsum at normal recommended agricultural rates seems not to have a significant impact on concentrations of trace metals in earthworms and soils.

4.
J Environ Qual ; 43(1): 322-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-25602566

ABSTRACT

There is renewed interest in the application of gypsum to agricultural lands, particularly of gypsum produced during flue gas desulfurization (FGD) at coal-burning power plants. We studied the effects of land application of FGD gypsum to corn ( L.) in watersheds draining to the Great Lakes. The FGD gypsum was surface applied at 11 sites at rates of 0, 1120, 2240, and 4480 kg ha after planting to 3-m by 7.6-m field plots. Approximately 12 wk after application, penetration resistance and hydraulic conductivity were measured in situ, and samples were collected for determination of bulk density and aggregate stability. No treatment effect was detected for penetration resistance or hydraulic conductivity. A positive treatment effect was seen for bulk density at only 2 of 10 sites tested. Aggregate stability reacted similarly across all sites and was decreased with the highest application of FGD gypsum, whereas the lower rates were not different from the control. Overall, there were few beneficial effects of the FGD gypsum to soil physical properties in the year of application.

5.
J Econ Entomol ; 98(1): 113-20, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15765672

ABSTRACT

Studies were conducted to examine the effect of potassium (K) on soybean aphid, Aphis glycines Matsumura, population growth. A laboratory feeding assay examined the effect of K-deficient foliage on life table parameters of soybean aphids, and field experiments were designed to determine the effect of three soil K treatment levels on aphid populations and their impact on soybean yields. The feeding assay found that life table parameters differed between aphids feeding on the K-deficient and nondeficient soybean leaves. Soybean aphids in the K-deficient treatment exhibited significantly greater intrinsic rate of increase (r(m)), finite rate of increase (lambda), and net reproductive rate (Ro) relative to aphids feeding on nondeficient leaves. No significant difference was observed in mean generation time (T) between the two treatments. However, the field experiment repeated over 2 yr showed no effect of K on soybean aphid populations. Soybean aphid populations were high in unsprayed plots and feeding resulted in significant yield losses in 2002 at all three K treatment levels: when averaged across 2001 and 2002, unsprayed treatments yielded 22, 18, and 19.5% less than the sprayed plots in the low, medium, and high K treatments, respectively. No significant interaction was observed between aphid abundance and K level on soybean yields in either year. This study therefore suggests that although aphids can perform better on K-deficient plants, aphid abundance in the field may be dependent on additional factors, such as dispersal, that may affect final densities within plots.


Subject(s)
Aphids/growth & development , Glycine max/growth & development , Potassium/analysis , Soil/analysis , Animals , Plant Leaves/chemistry , Population Density , Glycine max/chemistry
6.
J Environ Qual ; 32(5): 1844-50, 2003.
Article in English | MEDLINE | ID: mdl-14535328

ABSTRACT

Many municipalities have examined composting as an alternative to landfilling for the management of organic solid waste materials. Ultimately these materials will be land-applied and therefore some knowledge of nutrient availability will be necessary to optimize crop yield and minimize environmental risk. Field studies were conducted in 1993 and 1994 on a silt loam and a loamy sand soil in Wisconsin to determine the effect of municipal solid waste compost (MSWC) on corn (Zea mays L.) yield, plant nutrient concentration, and soil nitrate N content. Municipal solid waste composts with ages of 7, 36, and 270 d were applied at rates of 22.5, 45, and 90 Mg ha(-1) to small plots. Rates of commercial nitrogen (N) fertilizer, ranging from 0 to 179 kg N ha(-1), were applied to separate plots to determine the N availability from the MSWC. Treatments were applied in the spring and incorporated before planting corn. The 270-d MSWC increased corn whole-plant dry matter and grain yield at each location in both years above the 7- and 36-d MSWC. Rate of MSWC only affected grain yield at the loamy sand site in 1994. Municipal solid waste compost had minimal effect on the levels of plant nutrients in the whole-plant tissue measured at physiological maturity. Nitrate N measured in the top 90 cm of soil was higher throughout the growing season in treatments receiving recommended N fertilizer when compared with any of the MSWC treatments. It was estimated that 6 to 17% of the total N in the 270-d MSWC became available in the first year. The land-application of mature MSWC at the tested rates would be an agronomically and environmentally admissible practice.


Subject(s)
Conservation of Natural Resources , Nitrogen/analysis , Refuse Disposal , Agriculture , Environmental Monitoring , Fertilizers , Nitrates/analysis , Seasons , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL
...