Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 149(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35333324

ABSTRACT

Amino acid substitutions in the kinase domain of the human CSF1R gene are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (pGlu631Lys; E631K) in the mouse Csf1r locus. Homozygous mutation (Csf1rE631K/E631K) phenocopied the Csf1r knockout, with prenatal mortality or severe postnatal growth retardation and hydrocephalus. Heterozygous mutation delayed the postnatal expansion of tissue macrophage populations in most organs. Bone marrow cells from Csf1rE631K/+mice were resistant to CSF1 stimulation in vitro, and Csf1rE631K/+ mice were unresponsive to administration of a CSF1-Fc fusion protein, which expanded tissue macrophage populations in controls. In the brain, microglial cell numbers and dendritic arborisation were reduced in Csf1rE631K/+ mice, as in patients with ALSP. The microglial phenotype is the opposite of microgliosis observed in Csf1r+/- mice. However, we found no evidence of brain pathology or impacts on motor function in aged Csf1rE631K/+ mice. We conclude that heterozygous disease-associated CSF1R mutations compromise CSF1R signalling. We speculate that leukoencephalopathy associated with dominant human CSF1R mutations requires an environmental trigger and/or epistatic interaction with common neurodegenerative disease-associated alleles.


Subject(s)
Leukoencephalopathies , Neurodegenerative Diseases , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Animals , Humans , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Mice , Mutation/genetics , Neurodegenerative Diseases/pathology , Neuroglia , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
2.
J Immunol ; 205(11): 3154-3166, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33139489

ABSTRACT

The proliferation, differentiation, and survival of cells of the mononuclear phagocyte system (MPS; progenitors, monocytes, macrophages, and classical dendritic cells) are controlled by signals from the M-CSF receptor (CSF1R). Cells of the MPS lineage have been identified using numerous surface markers and transgenic reporters, but none is both universal and lineage restricted. In this article, we report the development and characterization of a CSF1R reporter mouse. A FusionRed (FRed) cassette was inserted in-frame with the C terminus of CSF1R, separated by a T2A-cleavable linker. The insertion had no effect of CSF1R expression or function. CSF1R-FRed was expressed in monocytes and macrophages and absent from granulocytes and lymphocytes. In bone marrow, CSF1R-FRed was absent in lineage-negative hematopoietic stem cells, arguing against a direct role for CSF1R in myeloid lineage commitment. It was highly expressed in marrow monocytes and common myeloid progenitors but significantly lower in granulocyte-macrophage progenitors. In sections of bone marrow, CSF1R-FRed was also detected in osteoclasts, CD169+ resident macrophages, and, consistent with previous mRNA analysis, in megakaryocytes. In lymphoid tissues, CSF1R-FRed highlighted diverse MPS populations, including classical dendritic cells. Whole mount imaging of nonlymphoid tissues in mice with combined CSF1R-FRed/Csf1r-EGFP confirmed the restriction of CSF1R expression to MPS cells. The two markers highlight the remarkable abundance and regular distribution of tissue MPS cells, including novel macrophage populations within tendon and skeletal muscle and underlying the mesothelial/serosal/capsular surfaces of every major organ. The CSF1R-FRed mouse provides a novel reporter with exquisite specificity for cells of the MPS.


Subject(s)
Biomarkers/metabolism , Mononuclear Phagocyte System/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Animals , Cell Differentiation/physiology , Dendritic Cells/metabolism , Hematopoietic Stem Cells/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Monocytes/metabolism , Muscle, Skeletal/metabolism , RNA, Messenger/metabolism , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Tendons/metabolism
3.
Nat Commun ; 10(1): 3215, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324781

ABSTRACT

The proliferation, differentiation and survival of mononuclear phagocytes depend on signals from the receptor for macrophage colony-stimulating factor, CSF1R. The mammalian Csf1r locus contains a highly conserved super-enhancer, the fms-intronic regulatory element (FIRE). Here we show that genomic deletion of FIRE in mice selectively impacts CSF1R expression and tissue macrophage development in specific tissues. Deletion of FIRE ablates macrophage development from murine embryonic stem cells. Csf1rΔFIRE/ΔFIRE mice lack macrophages in the embryo, brain microglia and resident macrophages in the skin, kidney, heart and peritoneum. The homeostasis of other macrophage populations and monocytes is unaffected, but monocytes and their progenitors in bone marrow lack surface CSF1R. Finally, Csf1rΔFIRE/ΔFIRE mice are healthy and fertile without the growth, neurological or developmental abnormalities reported in Csf1r-/- rodents. Csf1rΔFIRE/ΔFIRE mice thus provide a model to explore the homeostatic, physiological and immunological functions of tissue-specific macrophage populations in adult animals.


Subject(s)
Genes, fms/genetics , Macrophages/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Sequence Deletion , Animals , Base Sequence , Cell Differentiation , Cell Proliferation , Disease Models, Animal , Embryonic Stem Cells/pathology , Epidermal Growth Factor , Female , Gene Expression Regulation , Macrophage Colony-Stimulating Factor/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Monocytes/metabolism , Phagocytosis , RAW 264.7 Cells , Regulatory Sequences, Nucleic Acid/genetics
4.
BMC Evol Biol ; 18(1): 96, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29914368

ABSTRACT

BACKGROUND: Translation of specific mRNAs can be highly regulated in different cells, tissues or under pathological conditions. Ribosome heterogeneity can originate from variable expression or post-translational modifications of ribosomal proteins. The ribosomal oxygenases RIOX1 (NO66) and RIOX2 (MINA53) modify ribosomal proteins by histidine hydroxylation. A similar mechanism is present in prokaryotes. Thus, ribosome hydroxylation may be a well-conserved regulatory mechanism with implications in disease and development. However, little is known about the evolutionary history of Riox1 and Riox2 genes and their encoded proteins across eukaryotic taxa. RESULTS: In this study, we have analysed Riox1 and Riox2 orthologous genes from 49 metazoen species and have constructed phylogenomic trees for both genes. Our genomic and phylogenetic analyses revealed that Arthropoda, Annelida, Nematoda and Mollusca lack the Riox2 gene, although in the early phylum Cnidaria both genes, Riox1 and Riox2, are present and expressed. Riox1 is an intronless single-exon-gene in several species, including humans. In contrast to Riox2, Riox1 is ubiquitously present throughout the animal kingdom suggesting that Riox1 is the phylogenetically older gene from which Riox2 has evolved. Both proteins have maintained a unique protein architecture with conservation of active sites within the JmjC domains, a dimerization domain, and a winged-helix domain. In addition, Riox1 proteins possess a unique N-terminal extension domain. Immunofluorescence analyses in Hela cells and in Hydra vulgaris identified a nucleolar localisation signal within the extended N-terminal domain of human RIOX1 and an altered subnuclear localisation for the Hydra Riox2. CONCLUSIONS: Conserved active site residues and uniform protein domain architecture suggest a consistent enzymatic activity within the Riox orthologs throughout evolution. However, differences in genomic architecture, like single exon genes and alterations in subnuclear localisation, as described for Hydra, point towards adaption mechanisms that may correlate with taxa- or species-specific requirements. The diversification of Riox1/Riox2 gene structures throughout evolution suggest that functional requirements in expression of protein isoforms and/or subcellular localisation of proteins may have evolved by adaptation to lifestyle.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Evolution, Molecular , Genomics , Neoplasm Proteins/genetics , Oxygenases/genetics , Phylogeny , Amino Acid Sequence , Animals , Cell Nucleus/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Conserved Sequence , Dioxygenases , HeLa Cells , Histone Demethylases/chemistry , Histone Demethylases/genetics , Humans , Hydra , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Oxygenases/chemistry , Protein Domains , Protein Transport , Ribosomes/metabolism , Species Specificity
5.
Sci Rep ; 7(1): 17115, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29215000

ABSTRACT

The Csf1r locus encodes the receptor for macrophage colony-stimulating factor, which controls the proliferation, differentiation and survival of macrophages. The 300 bp Fms intronic regulatory element (FIRE), within the second intron of Csf1r, is necessary and sufficient to direct macrophage-specific transcription. We have analysed the conservation and divergence of the FIRE DNA sequence in vertebrates. FIRE is present in the same location in the Csf1r locus in reptile, avian and mammalian genomes. Nearest neighbor analysis based upon this element alone largely recapitulates phylogenies inferred from much larger genomic sequence datasets. One core element, containing binding sites for AP1 family and the macrophage-specific transcription factor, PU.1, is conserved from lizards to humans. Around this element, the FIRE sequence is conserved within clades with the most conserved elements containing motifs for known myeloid-expressed transcription factors. Conversely, there is little alignment between clades outside the AP1/PU.1 element. The analysis favours a hybrid between "enhanceosome" and "smorgasbord" models of enhancer function, in which elements cooperate to bind components of the available transcription factor milieu.


Subject(s)
Enhancer Elements, Genetic , Evolution, Molecular , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Animals , Conserved Sequence , Humans , Vertebrates
6.
Sci Aging Knowledge Environ ; 2005(15): pe10, 2005 Apr 13.
Article in English | MEDLINE | ID: mdl-15829737

ABSTRACT

A recent European Molecular Biology Laboratory Conference on Science and Society entitled "Time & Aging--Mechanisms & Meanings" fascinated scientists from different research areas as well as nonscientists. Topics discussed included not only the biological aging process but also the psychological effects of aging and social influences that affect this process.


Subject(s)
Aging/physiology , Aging/psychology , Longevity , Aged , Aging/genetics , Alzheimer Disease/physiopathology , Caloric Restriction , Cellular Senescence , Circadian Rhythm , Ethics, Professional , Humans , Middle Aged , Social Conditions , Telomere/ultrastructure
7.
Sci Aging Knowledge Environ ; 2004(1): pe2, 2004 Jan 07.
Article in English | MEDLINE | ID: mdl-14715895

ABSTRACT

The immune system is an important evolutionary invention to battle invaders in young and old organisms. Successful aging in humans who achieve nonagenarian status and beyond depends on how the immune system changes over time. Whether certain immune parameters vary with increased age is influenced by the genotype and lifestyle of the individual.


Subject(s)
Immune System/physiology , Longevity/immunology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...