Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 17(6): e1008943, 2021 06.
Article in English | MEDLINE | ID: mdl-34061829

ABSTRACT

The acoustic startle response is an evolutionarily conserved avoidance behavior. Disruptions in startle behavior, particularly startle magnitude, are a hallmark of several human neurological disorders. While the neural circuitry underlying startle behavior has been studied extensively, the repertoire of genes and genetic pathways that regulate this locomotor behavior has not been explored using an unbiased genetic approach. To identify such genes, we took advantage of the stereotypic startle behavior in zebrafish larvae and performed a forward genetic screen coupled with whole genome analysis. We uncovered mutations in eight genes critical for startle behavior, including two genes encoding proteins associated with human neurological disorders, Dolichol kinase (Dolk), a broadly expressed regulator of the glycoprotein biosynthesis pathway, and the potassium Shaker-like channel subunit Kv1.1. We demonstrate that Kv1.1 and Dolk play critical roles in the spinal cord to regulate movement magnitude during the startle response and spontaneous swim movements. Moreover, we show that Kv1.1 protein is mislocalized in dolk mutants, suggesting they act in a common genetic pathway. Combined, our results identify a diverse set of eight genes, all associated with human disorders, that regulate zebrafish startle behavior and reveal a previously unappreciated role for Dolk and Kv1.1 in regulating movement magnitude via a common genetic pathway.


Subject(s)
Genetic Testing/methods , Kv1.1 Potassium Channel/genetics , Phosphotransferases (Alcohol Group Acceptor)/physiology , Reflex, Startle/genetics , Zebrafish Proteins/genetics , Animals , Humans , Phosphotransferases (Alcohol Group Acceptor)/genetics , Zebrafish
2.
Elife ; 82019 06 17.
Article in English | MEDLINE | ID: mdl-31205004

ABSTRACT

To support cell survival, mitochondria must balance energy production with oxidative stress. Inner ear hair cells are particularly vulnerable to oxidative stress; thus require tight mitochondrial regulation. We identified a novel molecular regulator of the hair cells' mitochondria and survival: Pregnancy-associated plasma protein-aa (Pappaa). Hair cells in zebrafish pappaa mutants exhibit mitochondrial defects, including elevated mitochondrial calcium, transmembrane potential, and reactive oxygen species (ROS) production and reduced antioxidant expression. In pappaa mutants, hair cell death is enhanced by stimulation of mitochondrial calcium or ROS production and suppressed by a mitochondrial ROS scavenger. As a secreted metalloprotease, Pappaa stimulates extracellular insulin-like growth factor 1 (IGF1) bioavailability. We found that the pappaa mutants' enhanced hair cell loss can be suppressed by stimulation of IGF1 availability and that Pappaa-IGF1 signaling acts post-developmentally to support hair cell survival. These results reveal Pappaa as an extracellular regulator of hair cell survival and essential mitochondrial function.


Subject(s)
Calcium/metabolism , Hair Cells, Auditory/metabolism , Mitochondria/metabolism , Pregnancy-Associated Plasma Protein-A/metabolism , Reactive Oxygen Species/metabolism , Animals , Animals, Genetically Modified , Cell Survival/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hair Cells, Auditory/cytology , Humans , Larva/genetics , Larva/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Microscopy, Confocal , Mitochondria/genetics , Mutation , Pregnancy-Associated Plasma Protein-A/genetics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
3.
Aquat Toxicol ; 209: 1-12, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30684730

ABSTRACT

Aquatic herbicides are used worldwide to eradicate nuisance and invasive plants despite limited knowledge of their toxicity to non-target organisms. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common active ingredient in commercial herbicide formulations, which triggers plant cell death by mimicking the plant-specific hormone auxin. Application practices of 2,4-D commercial herbicides typically coincide with yearly freshwater fish spawning periods. This practice exposes fish to xenobiotics at their vulnerable larval stages. The full impacts of 2,4-D on larval fish remains poorly understood, and hence, whether it may alter larval survival, larval behavior, fish populations, and ecosystem dynamics. In the present study, we exposed embryonic and larval zebrafish (Danio rerio) to the active ingredient 2,4-D (pure 2,4-D) or a 2,4-D containing commercial herbicide DMA4®IVM (DMA4) and evaluated morphology, survival, behavior, and nervous system function. At 2,4-D concentrations producing no overt morphological defects during embryonic or early larval stages, we observed reduced survival throughout a 21-day larval assay (4-8 ppm DMA4 and 0.75-4 ppm pure 2,4-D). Notably, prey capture, a behavior essential to survival, was reduced in 2,4-D-exposed larval zebrafish (4-8 ppm DMA4 and 0.75-4 ppm pure 2,4-D) and yellow perch (Perca flavescens) (4-20 ppm DMA4). In zebrafish, 8 ppm DMA4 exposure reduced prey capture when exposure was restricted to the period of visual system development. Consistent with these results, larval zebrafish exposed to 8 ppm DMA4 showed reduced neural activity within the optic tectum following prey exposure. Together, our results suggest that 2,4-D alters the development and function of neural circuits underlying vision of larval fish, and thereby reduces visually guided behaviors required for survival.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/toxicity , Behavior, Animal/drug effects , Herbicides/toxicity , Perches/physiology , Vision, Ocular/physiology , Zebrafish/physiology , Animals , Larva/drug effects , Larva/physiology , Locomotion/drug effects , Neurons/drug effects , Neurons/physiology , Phototaxis/drug effects , Predatory Behavior/drug effects , Survival Analysis , Vision, Ocular/drug effects , Water Pollutants, Chemical/toxicity
4.
Behav Processes ; 157: 230-237, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30352272

ABSTRACT

The sensory modalities used by predatory fish to detect and capture prey are a key dimension of their foraging strategy. Determining the sensory cues that guide predation can also further conservation efforts under environmental change, and address the welfare of research animals. Here, we experimentally manipulated the sensory modalities used by adult zebrafish (Danio rerio) when foraging for larval conspecifics in captivity. We used minimally invasive techniques to test the consequences of eliminating visual, olfactory, and mechanosensory cues for predator behavior and success. Our results indicate that zebrafish require visual cues, but not olfactory or mechanosensory input. Reducing the visual contrast between prey and their surroundings decreased capture rates, suggesting that contrast underlies visual foraging. Video recordings of zebrafish during foraging indicate that they actively hunt larval fish, rather than employing a sit-and-wait approach. Together, our findings indicate adult zebrafish rely on visual cues to guide an active predation strategy.


Subject(s)
Predatory Behavior/physiology , Visual Perception/physiology , Zebrafish/physiology , Animals , Female , Male , Mechanoreceptors/physiology , Olfactory Perception/physiology
5.
J Neurogenet ; 32(4): 336-352, 2018 12.
Article in English | MEDLINE | ID: mdl-30204029

ABSTRACT

Down syndrome cell adhesion molecules (DSCAMs) are broadly expressed in nervous systems and play conserved roles in programmed cell death, neuronal migration, axon guidance, neurite branching and spacing, and synaptic targeting. However, DSCAMs appear to have distinct functions in different vertebrate animals, and little is known about their functions outside the retina. We leveraged the genetic tractability and optical accessibility of larval zebrafish to investigate the expression and function of a DSCAM family member, dscamb. Using targeted genome editing to create transgenic reporters and loss-of-function mutant alleles, we discovered that dscamb is expressed broadly throughout the brain, spinal cord, and peripheral nervous system, but is not required for overall structural organization of the brain. Despite the absence of obvious anatomical defects, homozygous dscamb mutants were deficient in their ability to ingest food and rarely survived to adulthood. Thus, we have discovered a novel function for dscamb in feeding behavior. The mutant and transgenic lines generated in these studies will provide valuable tools for identifying the molecular and cellular bases of these behaviors.


Subject(s)
Cell Adhesion Molecules/metabolism , Feeding Behavior/physiology , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified , Zebrafish
6.
J Neurosci ; 38(22): 5220-5236, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29739870

ABSTRACT

To guide behavior, sensory systems detect the onset and offset of stimuli and process these distinct inputs via parallel pathways. In the retina, this strategy is implemented by splitting neural signals for light onset and offset via synapses connecting photoreceptors to ON and OFF bipolar cells, respectively. It remains poorly understood which molecular cues establish the architecture of this synaptic configuration to split light-onset and light-offset signals. A mutant with reduced synapses between photoreceptors and one bipolar cell type, but not the other, could reveal a critical cue. From this approach, we report a novel synaptic role for pregnancy-associated plasma protein aa (pappaa) in promoting the structure and function of cone synapses that transmit light-offset information. Electrophysiological and behavioral analyses indicated pappaa mutant zebrafish have dysfunctional cone-to-OFF bipolar cell synapses and impaired responses to light offset, but intact cone-to-ON bipolar cell synapses and light-onset responses. Ultrastructural analyses of pappaa mutant cones showed a lack of presynaptic domains at synapses with OFF bipolar cells. pappaa is expressed postsynaptically to the cones during retinal synaptogenesis and encodes a secreted metalloprotease known to stimulate insulin-like growth factor 1 (IGF1) signaling. Induction of dominant-negative IGF1 receptor expression during synaptogenesis reduced light-offset responses. Conversely, stimulating IGF1 signaling at this time improved pappaa mutants' light-offset responses and cone presynaptic structures. Together, our results indicate Pappaa-regulated IGF1 signaling as a novel pathway that establishes how cone synapses convey light-offset signals to guide behavior.SIGNIFICANCE STATEMENT Distinct sensory inputs, like stimulus onset and offset, are often split at distinct synapses into parallel circuits for processing. In the retina, photoreceptors and ON and OFF bipolar cells form discrete synapses to split neural signals coding light onset and offset, respectively. The molecular cues that establish this synaptic configuration to specifically convey light onset or offset remain unclear. Our work reveals a novel cue: pregnancy-associated plasma protein aa (pappaa), which regulates photoreceptor synaptic structure and function to specifically transmit light-offset information. Pappaa is a metalloprotease that stimulates local insulin-like growth factor 1 (IGF1) signaling. IGF1 promotes various aspects of synaptic development and function and is broadly expressed, thus requiring local regulators, like Pappaa, to govern its specificity.


Subject(s)
Metalloendopeptidases/physiology , Photoreceptor Cells, Vertebrate/physiology , Psychomotor Performance/physiology , Synapses/physiology , Zebrafish Proteins/physiology , Animals , Electrophysiological Phenomena/physiology , Female , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Metalloendopeptidases/genetics , Photic Stimulation , Retinal Bipolar Cells/physiology , Retinal Cone Photoreceptor Cells/physiology , Retinal Photoreceptor Cell Inner Segment/metabolism , Retinal Photoreceptor Cell Inner Segment/physiology , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
7.
Cell Rep ; 23(3): 878-887, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-29669291

ABSTRACT

Sensory experiences dynamically modify whether animals respond to a given stimulus, but it is unclear how innate behavioral thresholds are established. Here, we identify molecular and circuit-level mechanisms underlying the innate threshold of the zebrafish startle response. From a forward genetic screen, we isolated five mutant lines with reduced innate startle thresholds. Using whole-genome sequencing, we identify the causative mutation for one line to be in the fragile X mental retardation protein (FMRP)-interacting protein cyfip2. We show that cyfip2 acts independently of FMRP and that reactivation of cyfip2 restores the baseline threshold after phenotype onset. Finally, we show that cyfip2 regulates the innate startle threshold by reducing neural activity in a small group of excitatory hindbrain interneurons. Thus, we identify a selective set of genes critical to establishing an innate behavioral threshold and uncover a circuit-level role for cyfip2 in this process.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Interneurons/metabolism , Zebrafish Proteins/metabolism , Acoustic Stimulation , Adaptor Proteins, Signal Transducing/genetics , Animals , Axons/metabolism , Behavior, Animal , Calcium/metabolism , Cytoskeleton/metabolism , Excitatory Postsynaptic Potentials , Fragile X Mental Retardation Protein/metabolism , Hypersensitivity/metabolism , Hypersensitivity/pathology , Larva/metabolism , Mutagenesis , Reflex, Startle/physiology , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/genetics
8.
Curr Biol ; 28(9): 1357-1369.e5, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29681477

ABSTRACT

Animals continuously integrate sensory information and select contextually appropriate responses. Here, we show that zebrafish larvae select a behavioral response to acoustic stimuli from a pre-existing choice repertoire in a context-dependent manner. We demonstrate that this sensorimotor choice is modulated by stimulus quality and history, as well as by neuromodulatory systems-all hallmarks of more complex decision making. Moreover, from a genetic screen coupled with whole-genome sequencing, we identified eight mutants with deficits in this sensorimotor choice, including mutants of the vertebrate-specific G-protein-coupled extracellular calcium-sensing receptor (CaSR), whose function in the nervous system is not well understood. We demonstrate that CaSR promotes sensorimotor decision making acutely through Gαi/o and Gαq/11 signaling, modulated by clathrin-mediated endocytosis. Combined, our results identify the first set of genes critical for behavioral choice modulation in a vertebrate and reveal an unexpected critical role for CaSR in sensorimotor decision making.


Subject(s)
Choice Behavior/physiology , Mutation , Psychomotor Performance , Receptors, Calcium-Sensing/physiology , Zebrafish Proteins/physiology , Zebrafish/physiology , Acoustic Stimulation , Animals , Behavior, Animal , Calcium/metabolism , Genetic Testing , Receptors, Calcium-Sensing/genetics , Zebrafish/embryology , Zebrafish Proteins/genetics
9.
J Neurosci ; 37(48): 11559-11571, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29061699

ABSTRACT

Motoneurons establish a critical link between the CNS and muscles. If motoneurons do not develop correctly, they cannot form the required connections, resulting in movement defects or paralysis. Compromised development can also lead to degeneration because the motoneuron is not set up to function properly. Little is known, however, regarding the mechanisms that control vertebrate motoneuron development, particularly the later stages of axon branch and dendrite formation. The motoneuron disease spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein leading to defects in vertebrate motoneuron development and synapse formation. Here we show using zebrafish as a model system that SMN interacts with the RNA binding protein (RBP) HuD in motoneurons in vivo during formation of axonal branches and dendrites. To determine the function of HuD in motoneurons, we generated zebrafish HuD mutants and found that they exhibited decreased motor axon branches, dramatically fewer dendrites, and movement defects. These same phenotypes are present in animals expressing low levels of SMN, indicating that both proteins function in motoneuron development. HuD binds and transports mRNAs and one of its target mRNAs, Gap43, is involved in axonal outgrowth. We found that Gap43 was decreased in both HuD and SMN mutants. Importantly, transgenic expression of HuD in motoneurons of SMN mutants rescued the motoneuron defects, the movement defects, and Gap43 mRNA levels. These data support that the interaction between SMN and HuD is critical for motoneuron development and point to a role for RBPs in SMA.SIGNIFICANCE STATEMENT In zebrafish models of the motoneuron disease spinal muscular atrophy (SMA), motor axons fail to form the normal extent of axonal branches and dendrites leading to decreased motor function. SMA is caused by low levels of the survival motor neuron (SMN) protein. We show in motoneurons in vivo that SMN interacts with the RNA binding protein, HuD. Novel mutants reveal that HuD is also necessary for motor axonal branch and dendrite formation. Data also revealed that both SMN and HuD affect levels of an mRNA involved in axonal growth. Moreover, expressing HuD in SMN-deficient motoneurons can rescue the motoneuron development and motor defects caused by low levels of SMN. These data support that SMN:HuD complexes are essential for normal motoneuron development and indicate that mRNA handling is a critical component of SMA.


Subject(s)
ELAV-Like Protein 4/genetics , ELAV-Like Protein 4/metabolism , Motor Neurons/physiology , RNA, Messenger/physiology , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Animals , Animals, Genetically Modified , Axons/physiology , Dendrites/genetics , Dendrites/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Zebrafish
10.
J Am Assoc Lab Anim Sci ; 56(4): 377-381, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28724486

ABSTRACT

The health of laboratory animals is an ethical responsibility of researchers and a critical determinant of experimental outcome. Therefore, all husbandry procedures should be evaluated for their effects on mortality, behavior, and physiology to maximize animal welfare and minimize experimental variability. For adult zebrafish, the excision of a small portion of the caudal fin (that is, 'fin clipping') under MS222 anesthesia is a common procedure to obtain tissue for genotyping. The potential effect of this procedure on behavioral and physiologic assays of feeding, anxiety, and stress has not previously been assessed. Here, we evaluated feeding behavior, anxiety-associated behaviors, and physiologic indicators of stress at multiple time points within 24 h after performing a standard fin-clip procedure under MS222 anesthesia. Within 1 h of the procedure, fin-clipped fish showed a mild increase in anxiety and exhibited reduced feeding; however, these effects were short-lived, and the fish exhibited baseline levels of anxiety and feeding by 6 and 24 h after fin clipping. Together with the zebrafish's ability to regenerate fin tissue and the low mortality associated with fin clipping, our data support the continued practice of this technique under MS222 anesthesia as a routine husbandry procedure that is unlikely to alter experimental outcomes related to feeding, anxiety, or stress.


Subject(s)
Anesthesia/veterinary , Animal Welfare , Behavior, Animal , Genotyping Techniques/veterinary , Zebrafish , Animals , Animals, Laboratory , Female , Genotyping Techniques/adverse effects , Male , Zebrafish/physiology , Zebrafish/surgery
11.
Sci Rep ; 6: 34437, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27687975

ABSTRACT

Cilia are cell surface organelles with key roles in a range of cellular processes, including generation of fluid flow by motile cilia. The axonemes of motile cilia and immotile kinocilia contain 9 peripheral microtubule doublets, a central microtubule pair, and 9 connecting radial spokes. Aberrant radial spoke components RSPH1, 3, 4a and 9 have been linked with primary ciliary dyskinesia (PCD), a disorder characterized by ciliary dysmotility; yet, radial spoke functions remain unclear. Here we show that zebrafish Rsph9 is expressed in cells bearing motile cilia and kinocilia, and localizes to both 9 + 2 and 9 + 0 ciliary axonemes. Using CRISPR mutagenesis, we show that rsph9 is required for motility of presumptive 9 + 2 olfactory cilia and, unexpectedly, 9 + 0 neural cilia. rsph9 is also required for the structural integrity of 9 + 2 and 9 + 0 ciliary axonemes. rsph9 mutant larvae exhibit reduced initiation of the acoustic startle response consistent with hearing impairment, suggesting a novel role for Rsph9 in the kinocilia of the inner ear and/or lateral line neuromasts. These data identify novel roles for Rsph9 in 9 + 0 motile cilia and in sensory kinocilia, and establish a useful zebrafish PCD model.

12.
J Cell Biol ; 211(4): 807-14, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26598617

ABSTRACT

Cell-cell recognition guides the assembly of the vertebrate brain during development. δ-Protocadherins comprise a family of neural adhesion molecules that are differentially expressed and have been implicated in a range of neurodevelopmental disorders. Here we show that the expression of δ-protocadherins partitions the zebrafish optic tectum into radial columns of neurons. Using in vivo two-photon imaging of bacterial artificial chromosome transgenic zebrafish, we show that pcdh19 is expressed in discrete columns of neurons, and that these columnar modules are derived from proliferative pcdh19(+) neuroepithelial precursors. Elimination of pcdh19 results in both a disruption of columnar organization and defects in visually guided behaviors. These results reveal a fundamental mechanism for organizing the developing nervous system: subdivision of the early neuroepithelium into precursors with distinct molecular identities guides the autonomous development of parallel neuronal units, organizing neural circuit formation and behavior.


Subject(s)
Cadherins/physiology , Superior Colliculi/cytology , Zebrafish Proteins/physiology , Animals , Base Sequence , Cell Proliferation , Gene Knockout Techniques , Molecular Sequence Data , Neurons/physiology , Protocadherins , Superior Colliculi/metabolism , Zebrafish
13.
Neurotoxicol Teratol ; 50: 1-10, 2015.
Article in English | MEDLINE | ID: mdl-25968237

ABSTRACT

Pyridostigmine bromide (PB) is an FDA-approved drug for the treatment of myasthenia gravis and a prophylactic pre-treatment for organophosphate nerve agent poisoning. Current methods for evaluating nerve agent treatments include enzymatic studies and mammalian models. Rapid whole animal screening tools for assessing the effects of nerve agent pre-treatment and post-exposure drugs represent an underdeveloped area of research. We used zebrafish as a model for acute and chronic developmental exposure to PB and two related carbamate acetylcholinesterase (AChE) inhibitors, neostigmine bromide (NB) and physostigmine (PS). Lethal doses and gross morphological phenotypes resulting from exposure to sub-lethal doses of these compounds were determined. Quantitative analyses of motility impairment and AChE enzyme inhibition were used to determine optimal dosing conditions for evaluation of the effects of carbamate exposures on neuronal development; ~50% impairment of response to startle stimuli and >50% inhibition of AChE activity were observed at 80 mMPB, 20 mM NB and 0.1 mM PS. PB induced stunted somite length, but no other phenotypic effects were observed. In contrast, NB and PS induced more severe phenotypic morphological defects than PB as well as neurite outgrowth mislocalization. Additionally, NB induced mislocalization of nicotinic acetylcholine receptors, resulting in impaired synapse formation. Taken together, these data suggest that altered patterns of neuronal connectivity contribute to the developmental neurotoxicity of carbamates and demonstrate the utility of the zebrafish model for distinguishing subtle structure-based differential effects of AChE inhibitors, which include nerve agents, pesticides and drugs.


Subject(s)
Carbamates/toxicity , Cholinesterase Inhibitors/toxicity , Nerve Agents/toxicity , Zebrafish/embryology , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Embryo, Nonmammalian/drug effects , Neostigmine/toxicity , Neurogenesis/drug effects , Physostigmine/toxicity , Pyridostigmine Bromide/toxicity , Zebrafish/metabolism
14.
Neuron ; 85(6): 1200-11, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25754827

ABSTRACT

Habituation represents a fundamental form of learning, yet the underlying molecular genetic mechanisms are not well defined. Here we report on a genome-wide genetic screen, coupled with whole-genome sequencing, that identified 14 zebrafish startle habituation mutants including mutants of the vertebrate-specific gene pregnancy-associated plasma protein-aa (pappaa). PAPP-AA encodes an extracellular metalloprotease known to increase IGF bioavailability, thereby enhancing IGF receptor signaling. We find that pappaa is expressed by startle circuit neurons, and expression of wild-type but not a metalloprotease-inactive version of pappaa restores habituation in pappaa mutants. Furthermore, acutely inhibiting IGF1R function in wild-type reduces habituation, while activation of IGF1R downstream effectors in pappaa mutants restores habituation, demonstrating that pappaa promotes learning by acutely and locally increasing IGF bioavailability. In sum, our results define the first functional gene set for habituation learning in a vertebrate and identify PAPPAA-regulated IGF signaling as a novel mechanism regulating habituation learning.


Subject(s)
Genome, Archaeal , Learning/physiology , Mutation/genetics , Pregnancy-Associated Plasma Protein-A/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction/genetics , Zebrafish/metabolism , Animals , Behavior, Animal , Female , Genetic Testing/methods , Neurons/metabolism , Pregnancy , Pregnancy-Associated Plasma Protein-A/genetics , Receptor, IGF Type 1/genetics
15.
Cell Rep ; 8(5): 1265-70, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25176649

ABSTRACT

Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder associated with attention deficits and learning disabilities. The primary known function of neurofibromin, encoded by the NF1 gene, is to downregulate Ras activity. We show that nf1-deficient zebrafish exhibit learning and memory deficits and that acute pharmacological inhibition of downstream targets of Ras (MAPK and PI3K) restores memory consolidation and recall but not learning. Conversely, acute pharmacological enhancement of cAMP signaling restores learning but not memory. Our data provide compelling evidence that neurofibromin regulates learning and memory by distinct molecular pathways in vertebrates and that deficits produced by genetic loss of function are reversible. These findings support the investigation of cAMP signaling enhancers as a companion therapy to Ras inhibition in the treatment of cognitive dysfunction in NF1.


Subject(s)
Cyclic AMP/metabolism , Learning , Memory , Neurofibromatosis 1/metabolism , Neurofibromin 1/metabolism , Zebrafish Proteins/metabolism , ras Proteins/metabolism , Animals , MAP Kinase Signaling System , Neurofibromatosis 1/physiopathology , Neurofibromin 1/genetics , Zebrafish , Zebrafish Proteins/genetics
16.
Hum Mol Genet ; 22(13): 2612-25, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23459934

ABSTRACT

Proper function of the motor unit is dependent upon the correct development of dendrites and axons. The infant/childhood onset motoneuron disease spinal muscular atrophy (SMA), caused by low levels of the survival motor neuron (SMN) protein, is characterized by muscle denervation and paralysis. Although different SMA models have shown neuromuscular junction defects and/or motor axon defects, a comprehensive analysis of motoneuron development in vivo under conditions of low SMN will give insight into why the motor unit becomes dysfunctional. We have generated genetic mutants in zebrafish expressing low levels of SMN from the earliest stages of development. Analysis of motoneurons in these mutants revealed motor axons were often shorter and had fewer branches. We also found that motoneurons had significantly fewer dendritic branches and those present were shorter. Analysis of motor axon filopodial dynamics in live embryos revealed that mutants had fewer filopodia and their average half-life was shorter. To determine when SMN was needed to rescue motoneuron development, SMN was conditionally induced in smn mutants during embryonic stages. Only when SMN was added back soon after motoneurons were born, could later motor axon development be rescued. Importantly, analysis of motor behavior revealed that animals with motor axon defects had significant deficits in motor output. We also show that SMN is required earlier for motoneuron development than for survival. These data support that SMN is needed early in development of motoneuron dendrites and axons to develop normally and that this is essential for proper connectivity and movement.


Subject(s)
Motor Neurons/metabolism , Neurogenesis/genetics , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Animals , Animals, Genetically Modified , Axons/metabolism , Axons/pathology , Disease Models, Animal , Motor Activity/genetics , Motor Neurons/pathology , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/mortality , Mutation , Zebrafish
17.
PLoS Genet ; 8(11): e1003106, 2012.
Article in English | MEDLINE | ID: mdl-23209449

ABSTRACT

Mutations in the retinoblastoma tumor suppressor gene (rb1) cause both sporadic and familial forms of childhood retinoblastoma. Despite its clinical relevance, the roles of rb1 during normal retinotectal development and function are not well understood. We have identified mutations in the zebrafish space cadet locus that lead to a premature truncation of the rb1 gene, identical to known mutations in sporadic and familial forms of retinoblastoma. In wild-type embryos, axons of early born retinal ganglion cells (RGC) pioneer the retinotectal tract to guide later born RGC axons. In rb1 deficient embryos, these early born RGCs show a delay in cell cycle exit, causing a transient deficit of differentiated RGCs. As a result, later born mutant RGC axons initially fail to exit the retina, resulting in optic nerve hypoplasia. A significant fraction of mutant RGC axons eventually exit the retina, but then frequently project to the incorrect optic tectum. Although rb1 mutants eventually establish basic retinotectal connectivity, behavioral analysis reveals that mutants exhibit deficits in distinct, visually guided behaviors. Thus, our analysis of zebrafish rb1 mutants reveals a previously unknown yet critical role for rb1 during retinotectal tract development and visual function.


Subject(s)
Retina , Retinoblastoma Protein/genetics , Retinoblastoma/genetics , Zebrafish , Animals , Axons/metabolism , Axons/pathology , Gene Expression Regulation, Developmental , Humans , Mutation , Retina/cytology , Retina/growth & development , Retina/metabolism , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/physiology , Retinoblastoma/pathology , Retinoblastoma Protein/metabolism , Superior Colliculi/cytology , Superior Colliculi/metabolism
18.
Dis Model Mech ; 5(6): 881-94, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22773753

ABSTRACT

Neurofibromatosis type 1 (NF1) is a common, dominantly inherited genetic disorder that results from mutations in the neurofibromin 1 (NF1) gene. Affected individuals demonstrate abnormalities in neural-crest-derived tissues that include hyperpigmented skin lesions and benign peripheral nerve sheath tumors. NF1 patients also have a predisposition to malignancies including juvenile myelomonocytic leukemia (JMML), optic glioma, glioblastoma, schwannoma and malignant peripheral nerve sheath tumors (MPNSTs). In an effort to better define the molecular and cellular determinants of NF1 disease pathogenesis in vivo, we employed targeted mutagenesis strategies to generate zebrafish harboring stable germline mutations in nf1a and nf1b, orthologues of NF1. Animals homozygous for loss-of-function alleles of nf1a or nf1b alone are phenotypically normal and viable. Homozygous loss of both alleles in combination generates larval phenotypes that resemble aspects of the human disease and results in larval lethality between 7 and 10 days post fertilization. nf1-null larvae demonstrate significant central and peripheral nervous system defects. These include aberrant proliferation and differentiation of oligodendrocyte progenitor cells (OPCs), dysmorphic myelin sheaths and hyperplasia of Schwann cells. Loss of nf1 contributes to tumorigenesis as demonstrated by an accelerated onset and increased penetrance of high-grade gliomas and MPNSTs in adult nf1a(+/-); nf1b(-/-); p53(e7/e7) animals. nf1-null larvae also demonstrate significant motor and learning defects. Importantly, we identify and quantitatively analyze a novel melanophore phenotype in nf1-null larvae, providing the first animal model of the pathognomonic pigmentation lesions of NF1. Together, these findings support a role for nf1a and nf1b as potent tumor suppressor genes that also function in the development of both central and peripheral glial cells as well as melanophores in zebrafish.


Subject(s)
Cell Transformation, Neoplastic/genetics , Embryonic Development/genetics , Genes, Neurofibromatosis 1 , Neurofibromatosis 1/genetics , Zebrafish/embryology , Zebrafish/genetics , Amino Acid Sequence , Animals , Base Sequence , Cell Proliferation , Cell Transformation, Neoplastic/pathology , Hyperplasia , Larva/genetics , Learning , Melanophores/metabolism , Melanophores/pathology , Molecular Sequence Data , Motor Activity , Mutation/genetics , Myelin Sheath/metabolism , Neurofibromatosis 1/physiopathology , Neurofibromin 1/chemistry , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Oligodendroglia/pathology , Schwann Cells/metabolism , Schwann Cells/pathology , Signal Transduction , Stem Cells/metabolism , Stem Cells/pathology , Tumor Suppressor Protein p53/metabolism , Up-Regulation , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , ras Proteins/metabolism
19.
J Neurosci ; 32(15): 5074-84, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22496553

ABSTRACT

The actin-binding protein plastin 3 (PLS3) has been identified as a modifier of the human motoneuron disease spinal muscular atrophy (SMA). SMA is caused by decreased levels of the survival motor neuron protein (SMN) and in its most severe form causes death in infants and young children. To understand the mechanism of PLS3 in SMA, we have analyzed pls3 RNA and protein in zebrafish smn mutants. We show that Pls3 protein levels are severely decreased in smn(-/-) mutants without a reduction in pls3 mRNA levels. Moreover, we show that both pls3 mRNA and protein stability are unaffected when Smn is reduced. This indicates that SMN affects PLS3 protein production. We had previously shown that, in smn mutants, the presynaptic protein SV2 is decreased at neuromuscular junctions. Transgenically driving human PLS3 in motoneurons rescues the decrease in SV2 expression. To determine whether PLS3 could also rescue function, we performed behavioral analysis on smn mutants and found that they had a significant decrease in spontaneous swimming and turning. Driving PLS3 transgenically in motoneurons rescued both of these defects. These data show that PLS3 protein levels are dependent on SMN and that PLS3 is able to rescue the neuromuscular defects and corresponding movement phenotypes caused by low levels of Smn suggesting that decreased PLS3 contributes to SMA motor phenotypes.


Subject(s)
Cell Survival/physiology , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/genetics , Microfilament Proteins/biosynthesis , Microfilament Proteins/genetics , Motor Neurons/physiology , Movement Disorders/genetics , Movement Disorders/physiopathology , Animals , Animals, Genetically Modified , Blotting, Western , Cell Line , DNA/biosynthesis , DNA/genetics , DNA, Antisense/pharmacology , Down-Regulation/physiology , Fluorescent Antibody Technique , Half-Life , Locomotion/physiology , Microscopy, Confocal , Neuromuscular Junction Diseases/genetics , Neuromuscular Junction Diseases/physiopathology , Polymerase Chain Reaction , Protein Processing, Post-Translational , RNA/biosynthesis , RNA/genetics , Terminology as Topic , Zebrafish
20.
J Neurosci ; 32(11): 3898-909, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22423110

ABSTRACT

In vertebrates, the peripheral nervous system has retained its regenerative capacity, enabling severed axons to reconnect with their original synaptic targets. While it is well documented that a favorable environment is critical for nerve regeneration, the complex cellular interactions between injured nerves with cells in their environment, as well as the functional significance of these interactions, have not been determined in vivo and in real time. Here we provide the first minute-by-minute account of cellular interactions between laser transected motor nerves and macrophages in live intact zebrafish. We show that macrophages arrive at the lesion site long before axon fragmentation, much earlier than previously thought. Moreover, we find that axon fragmentation triggers macrophage invasion into the nerve to engulf axonal debris, and that delaying nerve fragmentation in a Wld(s) model does not alter macrophage recruitment but induces a previously unknown 'nerve scanning' behavior, suggesting that macrophage recruitment and subsequent nerve invasion are controlled by separate mechanisms. Finally, we demonstrate that macrophage recruitment, thought to be dependent on Schwann cell-derived signals, occurs independently of Schwann cells. Thus, live cell imaging defines novel cellular and functional interactions between injured nerves and immune cells.


Subject(s)
Cell Communication , Macrophages/metabolism , Motor Neurons/metabolism , Nerve Regeneration/physiology , Peripheral Nerve Injuries/metabolism , Wallerian Degeneration/metabolism , Animals , Animals, Genetically Modified , Cell Communication/physiology , Cell Movement/physiology , Macrophages/pathology , Motor Neurons/pathology , Peripheral Nerve Injuries/pathology , Wallerian Degeneration/pathology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...