Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38139408

ABSTRACT

Plant waste biomass is the most abundant renewable energy resource on Earth. The main problem with utilising this biomass in anaerobic digestion is the long and costly stage of degrading its complex structure into simple compounds. One of the promising solutions to this problem is the application of fungi of the Trichoderma genus, which show a high capacity to produce hydrolytic enzymes capable of degrading lignocellulosic biomass before anaerobic digestion. This article discusses the structure of plant waste biomass and the problems resulting from its structure in the digestion process. It presents the methods of pre-treatment of lignocellulose with a particular focus on biological solutions. Based on the latest research findings, key parameters related to the application of Trichoderma sp. as a pre-treatment method are discussed. In addition, the possibility of using the digestate from agricultural biogas plants as a carrier for the multiplication of the Trichoderma sp. fungi, which are widely used in many industries, is discussed.


Subject(s)
Trichoderma , Anaerobiosis , Biofuels , Biomass , Hydrolysis
2.
Int J Mol Sci ; 24(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37373189

ABSTRACT

In this paper, an anaerobic digestion (AD) study was conducted on confectionery waste with granular polylactide (PLA) as a cell carrier. Digested sewage sludge (SS) served as the inoculum and buffering agent of systems. This article shows the results of the analyses of the key experimental properties of PLA, i.e., morphological characteristics of the microstructure, chemical composition and thermal stability of the biopolymer. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, performed using the state-of-the-art next generation sequencing (NGS) technique, revealed that the material significantly enhanced bacterial proliferation; however, it does not change microbiome biodiversity, as also confirmed via statistical analysis. More intense microbial proliferation (compared to the control sample, without PLA and not digested, CW-control, CW-confectionery waste) may be indicative of the dual role of the biopolymer-support and medium. Actinobacteria (34.87%) were the most abundant cluster in the CW-control, while the most dominant cluster in digested samples was firmicutes: in the sample without the addition of the carrier (CW-dig.) it was 68.27%, and in the sample with the addition of the carrier (CW + PLA) it was only 26.45%, comparable to the control sample (CW-control)-19.45%. Interestingly, the number of proteobacteria decreased in the CW-dig. sample (17.47%), but increased in the CW + PLA sample (39.82%) compared to the CW-control sample (32.70%). The analysis of biofilm formation dynamics using the BioFlux microfluidic system shows a significantly faster growth of the biofilm surface area for the CW + PLA sample. This information was complemented by observations of the morphological characteristics of the microorganisms using fluorescence microscopy. The images of the CW + PLA sample showed carrier sections covered with microbial consortia.


Subject(s)
Bioreactors , Waste Disposal, Fluid , Anaerobiosis , Bioreactors/microbiology , Waste Disposal, Fluid/methods , Bacteria/genetics , Bacteria/metabolism , Sewage/microbiology , Polyesters/metabolism , Microbial Consortia/genetics , Biofilms , Genetic Variation
3.
Materials (Basel) ; 15(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36431599

ABSTRACT

The management of waste polylactide (PLA) in various solutions of thermophilic anaerobic digestion (AD) is problematic and often uneconomical. This paper proposes a different approach to the use of PLA in mesophilic AD, used more commonly on the industrial scale, which consists of assigning the function of a microbial carrier to the biopolymer. The study involved the testing of waste wafers and waste wafers and cheese in a co-substrate system, combined with digested sewage sludge. The experiment was conducted on a laboratory scale, in a batch bioreactor mode. They were used as test samples and as samples with the addition of a carrier: WF-control and WFC-control; WF + PLA and WFC + PLA. The main objective of the study was to verify the impact of PLA in the granular (PLAG) and powder (PLAP) forms on the stability and efficiency of the process. The results of the analysis of physicochemical properties of the carriers, including the critical thermal analysis by differential scanning calorimetry (DSC), as well as the amount of cellular biomass of Bacillus amyloliquefaciens obtained in a culture with the addition of the tested PLAG and PLAP, confirmed that PLA can be an effective cell carrier in mesophilic AD. The addition of PLAG produced better results for bacterial proliferation than the addition of powdered PLA. The highest level of dehydrogenase activity was maintained in the WFC + PLAG system. An increase in the volume of the methane produced for the samples digested with the PLA granules carrier was registered in the study. It went up by c.a. 26% for WF, from 356.11 m3 Mg-1 VS (WF-control) to 448.84 m3 Mg-1 VS (WF + PLAG), and for WFC, from 413.46 m3 Mg-1 VS, (WFC-control) to 519.98 m3 Mg-1 VS (WFC + PLAG).

4.
Cells ; 11(16)2022 08 18.
Article in English | MEDLINE | ID: mdl-36010646

ABSTRACT

This paper analyses the impact of the diatomaceous earth/peat (DEP; 3:1) microbial carrier on changes in the bacterial microbiome and the development of biofilm in the anaerobic digestion (AD) of confectionery waste, combined with digested sewage sludge as inoculum. The physicochemical properties of the carrier material are presented, with particular focus on its morphological and dispersion characteristics, as well as adsorption and thermal properties. In this respect, the DEP system was found to be a suitable carrier for both mesophilic and thermophilic AD. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, carried out using next-generation sequencing (NGS), showed that the material has a modifying effect on the bacterial microbiome. While Actinobacteria was the most abundant cluster in the WF-control sample (WF-waste wafers), Firmicutes was the dominant cluster in the digested samples without the carrier (WF-dig.; dig.-digested) and with the carrier (WF + DEP). The same was true for the count of Proteobacteria, which decreased twofold during biodegradation in favor of Synergistetes. The Syntrophomonas cluster was identified as the most abundant genus in the two samples, particularly in WF + DEP. This information was supplemented by observations of morphological features of microorganisms carried out using fluorescence microscopy. The biodegradation process itself had a significant impact on changes in the microbiome of samples taken from anaerobic bioreactors, reducing its biodiversity. As demonstrated by the results of this innovative method, namely the BioFlux microfluidic flow system, the decrease in the number of taxa in the digested samples and the addition of DEP contributed to the microbial adhesion in the microfluidic system and the formation of a stable biofilm.


Subject(s)
Diatomaceous Earth , Soil , Anaerobiosis , Bacteria/metabolism , Bioreactors/microbiology , Diatomaceous Earth/metabolism , Genetic Variation , Sewage/chemistry , Sewage/microbiology
5.
Polymers (Basel) ; 11(12)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842367

ABSTRACT

The aim of the article was to present the effects of lignin grafted with polyvinylpyrrolidone (PVP) as a microbial carrier in anaerobic co-digestion (AcoD) of cheese (CE) and wafer waste (WF). Individual samples of waste cheese and wafers were also tested. The PVP modifier was used to improve the adhesive properties of the carrier surface. Lignin is a natural biopolymer which exhibits all the properties of a good carrier, including nontoxicity, biocompatibility, porosity, and thermal stability. Moreover, the analysis of the zeta potential of lignin and lignin combined with PVP showed their high electrokinetic stability within a wide pH range, that is, 4-11. The AcoD process was conducted under mesophilic conditions in a laboratory by means of anaerobic batch reactors. Monitoring with two standard parameters: pH and the VFA/TA ratio (volatile fatty acids-to-total alkalinity ratio) proved that the process was stable in all the samples tested. The high share of N-NH4+ in TKN (total Kjeldahl nitrogen), which exceeded 90% for WF+CE and CE at the last phases of the process, proved the effective conversion of nitrogen forms. The microbiological analyses showed that eubacteria proliferated intensively and the dehydrogenase activity increased in the samples containing the carrier, especially in the system with two co-substrates (WF+CE/lignin) and in the waste cheese sample (CE/lignin). The biogas production increased from 1102.00 m3 Mg-1 VS (volatile solids) to 1257.38 m3 Mg-1 VS in the WF+CE/lignin sample, and from 881.26 m3 Mg-1 VS to 989.65 m3 Mg-1 VS in the CE/lignin sample. The research results showed that the cell immobilization on lignin had very positive effect on the anaerobic digestion process.

6.
Sci Total Environ ; 671: 795-804, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-30947053

ABSTRACT

It has been assumed that compost from savoy cabbage and rapeseed straw is a good substrate for discrimination of the reproduction potential of Trichoderma strains. This hypothesis was verified based on a two-stage incubation experiment. The prepared mixture was fermented in a bio-reactor for 11 weeks. In the second experiment, the mature compost was inoculated with four strains of Trichoderma and a spore concentration of 104 and 106, and then incubated for four weeks. The biomass of autogenic fungi reached a maximum of 12.5 mg∙g-1 DM in the cooling phase. The variability in temperature during composting significantly affected NH3 emission. The pH of mature compost from cabbage wastes, as a result of the elevated NH3 emission reached the alkaline range. The survival of the Trichoderma fungi introduced into the alkali substrate was a result of strain sensitivity to the high pH of the compost and to the initial inoculum density. The adaptation potential of Trichoderma harzianum to the alkali milieu depended on the pH stabilization of the substrate by this fungi, provided the spore inoculum density was 106. The strains of Trichoderma atroviride responded negatively, regardless of the inoculum density, to the alkaline pH of the substrate and to self-induced changes in the compost pH.


Subject(s)
Composting/methods , Trichoderma/physiology , Alkalies , Bioreactors , Soil Microbiology , Vegetables
7.
PeerJ ; 7: e6434, 2019.
Article in English | MEDLINE | ID: mdl-30881760

ABSTRACT

Excessive amounts of sewage sludge produced in sewage treatment plants along with the ban on its storage and dumping require rapid solutions to the problem of sewage sludge management. An example of a rational and environmentally viable method may be provided by its application in agriculture and environmental management. The optimal solution is to use sludge as a fertiliser for industrial plants, including energy crops, that is, those not used in food production. For environmental reasons it is essential to control soil quality and condition following sludge application. Analyses of the residual effect of sewage sludge and bacteria, actinobacteria, fungi microbial inoculant (BAF) on selected physiological parameters of plants and microbial activity of soil were conducted in the years 2013-2015 on experimental fields of the Poznan University of Life Sciences. The results indicate that the application of sewage sludge increased yields and improved selected photosynthesis activity and biometric traits of willow. Among the tested combinations the best results were obtained following the application of sewage sludge combined with the BAF medium microbial inoculant. Similar dependencies were observed when evaluating soil microbial activity.

8.
Molecules ; 24(1)2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30583475

ABSTRACT

It was the objective of this study to verify the efficiency and stability of anaerobic digestion (AD) for selected confectionery waste, including chocolate bars (CB), wafers (W), and filled wafers (FW), by inoculation with digested cattle slurry and maize silage pulp. Information in the literature on biogas yield for these materials and on their usefulness as substrate in biogas plants remains to be scarce. Owing to its chemical structure, including the significant content of carbon-rich carbohydrates and fat, the confectionery waste has a high biomethane potential. An analysis of the AD process indicates differences in the fluctuations of the pH values of three test samples. In comparison with W and FW, CB tended to show slightly more reduced pH values in the first step of the process; moreover an increase in the content of volatile fatty acids (VFA) was recorded. In the case of FW, the biogas production process showed the highest stability. Differences in the decomposition dynamics for the three types of test waste were accounted for by their different carbohydrate contents and also different biodegradabilities of specific compounds. The highest efficiency of the AD process was obtained for the filled wafers, where the biogas volumes, including methane, were 684.79 m³ Mg-1 VS and 506.32 m³ Mg-1 VS, respectively. A comparable volume of biogas (673.48 m³ Mg-1 VS) and a lower volume of methane (407.46 m³ Mg-1 VS) were obtained for chocolate bars. The lowest volumes among the three test material types, i.e., 496.78 m³ Mg-1 VS (biogas) and 317.42 m³ Mg-1 VS (methane), were obtained for wafers. This article also proposes a method of estimation of the biochemical methane potential (theoretical BMP) based on the chemical equations of degradation of sugar, fats, and proteins and known biochemical composition (expressed in grams).


Subject(s)
Anaerobiosis , Biodegradation, Environmental , Biofuels , Waste Products , Analysis of Variance , Bioreactors , Fermentation , Methane/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...