Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 52(12): 2581-4, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26750101

ABSTRACT

Ammine metal borohydrides (AMBs) have recently commanded attention as low-temperature hydrogen sources. As an alternative to widely used mechanochemical synthesis that affords mixtures with salt co-products, we have been investigating solution synthesis routes to obtain pure AMBs. Here we show that reactions of MCln + nNaBH4 with ammonia in thf afford ammonia-borane (AB) via borane abstraction from M-coordinated borohydride. The amount of AB formed correlates roughly with the metal ion electronegativity and AMB thermal stability, except for reducible metals such as Ti, which affords nearly 3 equiv. of AB per Ti.

3.
Dalton Trans ; 44(21): 9718-31, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25915435

ABSTRACT

This perspective describes the recent discovery and investigation of homopolar dihydrogen bonding, and focuses on the identification and characterisation of hydride-hydride interactions in compounds of the main group elements. A highlight of this programme has been an appreciation of the important role played by this interaction in the structural and thermochemical properties of these materials, and in the mechanisms through which they release hydrogen. A fuller understanding of this new class of H∙∙∙H interactions has also allowed us to explore their role in the supramolecular chemistry of hydrogen-rich compounds.

4.
Angew Chem Int Ed Engl ; 54(1): 164-8, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25376525

ABSTRACT

The design of molecular catalysts that mimic the behavior of enzymes is a topical field of activity in emerging technologies, and can lead to an improved understanding of biological systems. Herein, we report how the bulky arms of the cations in [(n C4 H9 )4 N](+) [HCO3 ](-) give rise to a host scaffold that emulates the substrate binding sites in carbonic anhydrase enzymes, affording a unique glimpse of an arrested intermediate in the base-mediated binding and activation of CO2 .


Subject(s)
Bicarbonates/chemistry , Biomimetic Materials/chemistry , Carbon Dioxide/metabolism , Carbonic Anhydrases/chemistry , Quaternary Ammonium Compounds/chemistry , Bicarbonates/metabolism , Binding Sites , Biomimetic Materials/metabolism , Biomimetics , Carbonic Anhydrases/metabolism , Crystallography, X-Ray , Models, Molecular , Quaternary Ammonium Compounds/metabolism
5.
Chem Commun (Camb) ; 50(29): 3820-3, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24589845

ABSTRACT

A theoretical study of the desorption of hydrogen from rhombic Group 1 metal hydride dimers reveals a concerted reorganisation of the electron density for the M-H and H-H moieties as the reaction coordinate is traversed and a closed-shell H···H interaction evolves into a covalent H2 bond. The central role played by homopolar dihydrogen bonding in this process is revealed and analysed.

6.
Angew Chem Int Ed Engl ; 52(23): 6092-6, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23616491

ABSTRACT

Experimental and theoretical charge density studies and molecular orbital analyses suggest that the complexes [Cp2Ti(PMe3)SiH2Ph2] (1) and [Cp2Ti(PMe3)SiHCl3] (2) display virtually the same electronic structures. No evidence for a significant interligand hypervalent interaction could be identified for 2. A bonding concept for transition-metal hydrosilane complexes aims to identify the true key parameters for a selective activation of the individual M-Si and Si-H bonds.

7.
J Am Chem Soc ; 135(7): 2439-42, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23363072

ABSTRACT

Hydrogen bonding is a predominant interaction in supramolecular chemistry. The absence of a conventional hydrogen bond donor in LiNMe(2)BH(3) and KNMe(2)BH(3) results in the formation of elaborate M···H-B polymeric arrays supported by heteropolar and homopolar H···H bonding, in a unique synergistic combination of unconventional intermolecular interactions.

8.
Chem Commun (Camb) ; 48(20): 2597-9, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22288073

ABSTRACT

The solid-state structure of ammonia borane is held together by an intricate N-H···H-B proton-hydride bonding network. These intermolecular interactions have long been considered to mediate the release of hydrogen from this material. Here we reveal the silent but important role played by B-H···H-B interactions in the thermal decomposition of this leading hydrogen storage candidate.

9.
Inorg Chem ; 50(21): 11222-7, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21981304

ABSTRACT

Density functional theory (DFT) calculations of [K(18-crown-6)SiH(3)] (1) and KSiH(3) (2) have shown that both the classical tet and non-classical inv coordination modes of the [SiH(3)](-) anion to the K(+) ion are energetically accessible. Single-crystal X-ray structures of the tet and inv derivatives [K(18-crown-6)SiH(3)·THF] (1a) and [K(18-crown-6)SiH(3)·HSiPh(3)] (1b) confirm this conclusion, showing that small changes in the coordination sphere of the metal are sufficient to alter the orientation of the anion. A topological analysis of the calculated electron densities for 1 and 2 reveals that the K···Si interaction in the tet conformer of 2 possesses a significant amount of covalent character. In contrast, the inv form of 2 displays primarily electrostatic character for the K···Si and K···H interactions. Incorporation of the 18-crown-6 ligand in 1 reduces the polarizing power of the K(+) cation, hardening the cation-anion interaction in both conformers. The experimental structures of 1a and 1b bear out these conclusions, with the strongly bound tetrahydrofuran (THF) ligand softening the K(+) ion in 1a and favoring the tet conformer, while the weakly interacting HSiPh(3) ligand in 1b has minimal effect on the K(+) center, resulting in an inv orientation.

10.
J Am Chem Soc ; 133(41): 16598-604, 2011 Oct 19.
Article in English | MEDLINE | ID: mdl-21859070

ABSTRACT

The solid-state structures of LiNH(2)BH(3) and NaNH(2)BH(3) have been shown recently to exhibit intricate M(δ+)···(δ-)H-B and N-H(δ+)···(δ-)H-B interactions. However, closer inspection of these structures reveals additional homopolar H···H interactions, viz., B-H(δ-)···(δ-)H-B and N-H(δ+)···(δ+)H-N, which contribute to the relative stability of the extended structures of these crystalline materials. In addition, an NMR study of the isotopomer LiND(2)BH(3) shows that a significant quantity of H(2) is desorbed thermally along with HD, which can only arise from hydride-hydride interactions, either directly from B-H(δ-)···(δ-)H-B moieties or indirectly through the participation of Li-H intermediates.


Subject(s)
Energy-Generating Resources , Metals, Alkali/chemistry , Hydrogen Bonding
11.
Dalton Trans ; 40(33): 8301-3, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21713292

ABSTRACT

The extended structures of [K(1-aza-18-crown-6)]BH(4) and its 18-crown-6 analogue exhibits significantly different primary and secondary stabilizing interactions. However, their respective ion pairs display similar cation-to-anion interactions, in spite of the differences in the nature of the crown ether ligand.

13.
Phys Chem Chem Phys ; 10(24): 3569-77, 2008 Jun 28.
Article in English | MEDLINE | ID: mdl-18548163

ABSTRACT

The experimental charge densities for a series of sym-N-methyl-substituted ethylenediammonium dithiocyanate salts have been investigated based on low-temperature and high-resolution X-ray diffraction data. This series of organic dications provides both strong and weak hydrogen bonding networks that vary depending on the N-H : SCN(-) (donor/acceptor) ratios. The number of N-HN hydrogen bonds connected to each cation increases (linear to bifurcated) as the number of N-H donor groups increases. The bifurcated thiocyanate anions also form a less energetic N-HS hydrogen bond. The presence of more than one hydrogen bond acceptor on each thiocyanate anion results in a competition between the sulfur and nitrogen atoms in forming both strong and weak hydrogen bonds. The formation of a significant number of weak hydrogen bonds is shown to play a crucial role in stabilizing these organic ionic crystals. The progression of these organic dications (smaller to larger N-H : SCN(-) ratios) results in the weaker hydrogen bonds playing a smaller role in stabilizing the crystalline structures. In addition, the electron density along the saddle point has been shown to vary significantly from weak hydrogen bonds to van der Waals interactions. This has led to a better understanding of the progression of hydrogen bonding in the crystalline states of sym-N-methyl substituted ethylenediammonium dithiocyanate salts and provides insight into the relationship between strong and weak hydrogen bonds in organic ionic crystals.


Subject(s)
Ethylenediamines/chemistry , Quaternary Ammonium Compounds/chemistry , Thiocyanates/chemistry , Crystallography, X-Ray , Electrons , Hydrogen Bonding
14.
J Phys Chem A ; 112(15): 3424-31, 2008 Apr 17.
Article in English | MEDLINE | ID: mdl-18348548

ABSTRACT

The experimental charge density for hexamethyldiphosphonium ditriflate has been determined from low-temperature high-resolution X-ray diffraction data. These results have been compared with theoretically calculated values for the isolated gas-phase compound. Analysis of the topological and atomic basin properties has provided insight into the exact nature of the P-P bond in both the crystalline and the gas-phase structures. The rho(b)(r) and nabla2rho(b)(r) values highlight the covalent nature of the P-P bond, while the atomic charges indicate a localization of the positive charges on the two phosphorus atoms. This seems to indicate that a covalent bond is formed despite a strong electrostatic repulsion between these two heteroatoms. The topological properties and electrostatic potentials have also been shown to provide significant insight into the chemical reactivity of the title compound. A topological analysis of P2Me4, P2Me5(+), and P2Me6(+2) species has provided information about the progression of the P-P bond in the synthesis of the title compound. An investigation of the different hydrogen-bonding networks present in the crystalline and gas-phase structures, along with their affect on the electronic structure of the title compound has also been investigated. This has all led to significant new insight into the electronic structure, reactivity, and weak hydrogen bonding in prototypical 1,2-diphosphonium dications.

15.
J Phys Chem A ; 111(36): 8803-13, 2007 Sep 13.
Article in English | MEDLINE | ID: mdl-17705352

ABSTRACT

Helicenes are molecules of considerable interest in view of their aromaticity which persists despite a marked departure from planarity and because of the extreme potency of some of their metabolites as tumor and mutation promoters. In this study, the electron density of 4-methyl-[4]helicene (or 4-methylbenzo[c]phenanthrene) is studied topologically with an emphasis on the fjord region since this region is where metabolic activation is initiated. The molecule consists of four fused aromatic rings that assume a twisted geometry. This geometry brings two hydrogen atoms into close proximity in the fjord region of the molecule accompanied by the appearance of an intramolecular C-Hdelta+...delta+H-C bond path (an interaction termed hydrogen-hydrogen or H- H bonding to distinguish it from dihydrogen bonding from which it is qualitatively distinct). In addition to the intramolecular H-H interaction, a number of intermolecular interactions are shown to be involved in the packing of this molecule in the crystalline state. The effect of the nonplanarity of the molecule on the local aromaticity of each ring is also discussed.


Subject(s)
Electrons , Models, Chemical , Models, Molecular , Polycyclic Aromatic Hydrocarbons/chemistry , Crystallography, X-Ray , Hydrogen Bonding
16.
J Phys Chem A ; 110(46): 12636-43, 2006 Nov 23.
Article in English | MEDLINE | ID: mdl-17107115

ABSTRACT

The crystal structure of the nonlinear optical material, iodoform octasulfur (CHI3.(S8)3), in the polar space group R3m, has been shown to contain three unique S...I and several S...S close contacts (

17.
J Phys Chem A ; 110(28): 8970-8, 2006 Jul 20.
Article in English | MEDLINE | ID: mdl-16836461

ABSTRACT

The crystal structures of tetraphenylphosphonium squarate, bianthrone, and bis(benzophenone)azine are shown to contain a variety of C-H(delta+)...(delta+)H-C interactions, as well as a variety of C-H...O and C-H...C(pi) interactions. Each of these molecules possesses interactions that can possibly be characterized as either H-H bonds or weak hydrogen bonds based on the first four criteria proposed by Koch and Popelier. These interactions have been completely characterized topologically after the multipole refinement of the structures. It appears that weak interactions of the form C-H(delta+)...(delta+)H-C possess certain correlations between the various properties of the electron density at the bond critical points. The coexistence of the three types of interactions makes it possible to establish similarities and differences in the correlations of these weak interactions. This all leads to a better understanding of H-H interactions and how they fit into the hierarchy of weak interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...