Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
PLoS Pathog ; 20(7): e1012394, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991026

ABSTRACT

Staphylococcus aureus is a facultative intracellular pathogen of human macrophages, which facilitates chronic infection. The genotypes, pathways, and mutations influencing that phenotype remain incompletely explored. Here, we used two distinct strategies to ascertain S. aureus gene mutations affecting pathogenesis in macrophages. First, we analyzed isolates collected serially from chronic cystic fibrosis (CF) respiratory infections. We found that S. aureus strains evolved greater macrophage invasion capacity during chronic human infection. Bacterial genome-wide association studies (GWAS) identified 127 candidate genes for which mutation was significantly associated with macrophage pathogenesis in vivo. In parallel, we passaged laboratory S. aureus strains in vitro to select for increased infection of human THP-1 derived macrophages, which identified 15 candidate genes by whole-genome sequencing. Functional validation of candidate genes using isogenic transposon mutant knockouts and CRISPR interference (CRISPRi) knockdowns confirmed virulence contributions from 37 of 39 tested genes (95%) implicated by in vivo studies and 7 of 10 genes (70%) ascertained from in vitro selection, with one gene in common to the two strategies. Validated genes included 17 known virulence factors (39%) and 27 newly identified by our study (61%), some encoding functions not previously associated with macrophage pathogenesis. Most genes (80%) positively impacted macrophage invasion when disrupted, consistent with the phenotype readily arising from loss-of-function mutations in vivo. This work reveals genes and mechanisms that contribute to S. aureus infection of macrophages, highlights differences in mutations underlying convergent phenotypes arising from in vivo and in vitro systems, and supports the relevance of S. aureus macrophage pathogenesis during chronic respiratory infection in CF. Additional studies will be needed to illuminate the exact mechanisms by which implicated mutations affect their phenotypes.

2.
Infect Immun ; 91(3): e0053822, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36847490

ABSTRACT

Staphylococcus aureus generates biofilms during many chronic human infections, which contributes to its growth and persistence in the host. Multiple genes and pathways necessary for S. aureus biofilm production have been identified, but knowledge is incomplete, and little is known about spontaneous mutations that increase biofilm formation as infection progresses. Here, we performed in vitro selection of four S. aureus laboratory strains (ATCC 29213, JE2, N315, and Newman) to identify mutations associated with enhanced biofilm production. Biofilm formation increased in passaged isolates from all strains, exhibiting from 1.2- to 5-fold the capacity of parental lines. Whole-genome sequencing identified nonsynonymous mutations affecting 23 candidate genes and a genomic duplication encompassing sigB. Six candidate genes significantly impacted biofilm formation as isogenic transposon knockouts: three were previously reported to impact S. aureus biofilm formation (icaR, spdC, and codY), while the remaining three (manA, narH, and fruB) were newly implicated by this study. Plasmid-mediated genetic complementation of manA, narH, and fruB transposon mutants corrected biofilm deficiencies, with high-level expression of manA and fruB further enhancing biofilm formation over basal levels. This work recognizes genes not previously identified as contributing to biofilm formation in S. aureus and reveals genetic changes able to augment biofilm production by that organism.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/metabolism , Plasmids , Mutation , Biofilms
3.
Cell Host Microbe ; 30(7): 961-974.e6, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35439435

ABSTRACT

Antimicrobials can impact bacterial physiology and host immunity with negative treatment outcomes. Extensive exposure to antifolate antibiotics promotes thymidine-dependent Staphylococcus aureus small colony variants (TD-SCVs), commonly associated with worse clinical outcomes. We show that antibiotic-mediated disruption of thymidine synthesis promotes elevated levels of the bacterial second messenger cyclic di-AMP (c-di-AMP), consequently inducing host STING activation and inflammation. An initial antibiotic screen in Firmicutes revealed that c-di-AMP production was largely driven by antifolate antibiotics targeting dihydrofolate reductase (DHFR), which promotes folate regeneration required for thymidine biosynthesis. Additionally, TD-SCVs exhibited excessive c-di-AMP production and STING activation in a thymidine-dependent manner. Murine lung infection with TD-SCVs revealed STING-dependent elevation of proinflammatory cytokines, causing higher airway neutrophil infiltration and activation compared with normal-colony S. aureus and hemin-dependent SCVs. Collectively, our results suggest that thymidine metabolism disruption in Firmicutes leads to elevated c-di-AMP-mediated STING-dependent inflammation, with potential impacts on antibiotic usage and infection outcomes.


Subject(s)
Folic Acid Antagonists , Staphylococcal Infections , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Cyclic AMP/metabolism , Dinucleoside Phosphates , Folic Acid Antagonists/metabolism , Inflammation , Mice , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Thymidine/metabolism
4.
Cell Death Dis ; 12(3): 241, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664232

ABSTRACT

Pseudomonas aeruginosa is a common respiratory pathogen in cystic fibrosis (CF) patients which undergoes adaptations during chronic infection towards reduced virulence, which can facilitate bacterial evasion of killing by host cells. However, inflammatory cytokines are often found to be elevated in CF patients, and it is unknown how chronic P. aeruginosa infection can be paradoxically associated with both diminished virulence in vitro and increased inflammation and disease progression. Thus, we investigated the relationship between the stimulation of inflammatory cell death pathways by CF P. aeruginosa respiratory isolates and the expression of key inflammatory cytokines. We show that early respiratory isolates of P. aeruginosa from CF patients potently induce inflammasome signaling, cell death, and expression of IL-1ß by macrophages, yet little expression of other inflammatory cytokines (TNF, IL-6 and IL-8). In contrast, chronic P. aeruginosa isolates induce relatively poor macrophage inflammasome signaling, cell death, and IL-1ß expression but paradoxically excessive production of TNF, IL-6 and IL-8 compared to early P. aeruginosa isolates. Using various mutants of P. aeruginosa, we show that the premature cell death of macrophages caused by virulent bacteria compromises their ability to express cytokines. Contrary to the belief that chronic P. aeruginosa isolates are less pathogenic, we reveal that infections with chronic P. aeruginosa isolates result in increased cytokine induction due to their failure to induce immune cell death, which results in a relatively intense inflammation compared with early isolates.


Subject(s)
Cystic Fibrosis/microbiology , Cytokines/metabolism , Inflammasomes/metabolism , Inflammation Mediators/metabolism , Lung/microbiology , Macrophages/microbiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/pathogenicity , Cell Death , Cystic Fibrosis/immunology , Cystic Fibrosis/metabolism , Host-Pathogen Interactions , Humans , Inflammasomes/genetics , Inflammasomes/immunology , Lung/immunology , Lung/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Pseudomonas Infections/immunology , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/immunology , Signal Transduction , THP-1 Cells , Time Factors , Virulence
6.
J Antimicrob Chemother ; 76(3): 616-625, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33259594

ABSTRACT

BACKGROUND: Bacteria adapt to survive and grow in different environments. Genetic mutations that promote bacterial survival under harsh conditions can also restrict growth. The causes and consequences of these adaptations have important implications for diagnosis, pathogenesis, and therapy. OBJECTIVES: We describe the isolation and characterization of an antibiotic-dependent, temperature-sensitive Pseudomonas aeruginosa mutant chronically infecting the respiratory tract of a cystic fibrosis (CF) patient, underscoring the clinical challenges bacterial adaptations can present. METHODS: Respiratory samples collected from a CF patient during routine care were cultured for standard pathogens. P. aeruginosa isolates recovered from samples were analysed for in vitro growth characteristics, antibiotic susceptibility, clonality, and membrane phospholipid and lipid A composition. Genetic mutations were identified by whole genome sequencing. RESULTS: P. aeruginosa isolates collected over 5 years from respiratory samples of a CF patient frequently harboured a mutation in phosphatidylserine decarboxylase (psd), encoding an enzyme responsible for phospholipid synthesis. This mutant could only grow at 37°C when in the presence of supplemented magnesium, glycerol, or, surprisingly, the antibiotic sulfamethoxazole, which the source patient had repeatedly received. Of concern, this mutant was not detectable on standard selective medium at 37°C. This growth defect correlated with alterations in membrane phospholipid and lipid A content. CONCLUSIONS: A P. aeruginosa mutant chronically infecting a CF patient exhibited dependence on sulphonamides and would likely evade detection using standard clinical laboratory methods. The diagnostic and therapeutic challenges presented by this mutant highlight the complex interplay between bacterial adaptation, antibiotics, and laboratory practices, during chronic bacterial infections.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Humans , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Temperature
7.
Am J Respir Crit Care Med ; 203(9): 1127-1137, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33296290

ABSTRACT

Rationale:Staphylococcus aureus is the most common respiratory pathogen isolated from patients with cystic fibrosis (CF) in the United States. Although modes of acquisition and genetic adaptation have been described for Pseudomonas aeruginosa, resulting in improved diagnosis and treatment, these features remain more poorly defined for S. aureus.Objectives: To characterize the molecular epidemiology and genetic adaptation of S. aureus during chronic CF airway infection and in response to antibiotic therapy.Methods: We performed whole-genome sequencing of 1,382 S. aureus isolates collected longitudinally over a mean 2.2 years from 246 children with CF at five U.S. centers between 2008 and 2017. Results were integrated with clinical and demographic data to characterize bacterial population dynamics and identify common genetic targets of in vivo adaptation.Measurements and Main Results: Results showed that 45.5% of patients carried multiple, coexisting S. aureus lineages, often having different antibiotic susceptibility profiles. Adaptation during the course of infection commonly occurred in a set of genes related to persistence and antimicrobial resistance. Individual sequence types demonstrated wide geographic distribution, and we identified limited strain-sharing among children linked by common household or clinical exposures. Unlike P. aeruginosa, S. aureus genetic diversity was unconstrained, with an ongoing flow of new genetic elements into the population of isolates from children with CF.Conclusions: CF airways are frequently coinfected by multiple, genetically distinct S. aureus lineages, indicating that current clinical procedures for sampling isolates and selecting antibiotics are likely inadequate. Strains can be shared by patients in close domestic or clinical contact and can undergo convergent evolution in key persistence and antimicrobial-resistance genes, suggesting novel diagnostic and therapeutic approaches for future study.


Subject(s)
Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Respiratory Tract Infections/microbiology , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Adolescent , Anti-Bacterial Agents/therapeutic use , Child , Cohort Studies , Female , Humans , Male , Molecular Epidemiology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/genetics , Staphylococcal Infections/drug therapy
8.
Thorax ; 75(9): 780-790, 2020 09.
Article in English | MEDLINE | ID: mdl-32631930

ABSTRACT

RATIONALE: The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments. OBJECTIVES: To rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics. METHODS AND MEASUREMENTS: We collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories. MAIN RESULTS: CF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects' sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome. CONCLUSIONS: Maintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria , Cystic Fibrosis/microbiology , Microbiota/drug effects , Sputum/microbiology , Tobramycin/pharmacology , Administration, Inhalation , Adolescent , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Infections/prevention & control , Child , Cystic Fibrosis/physiopathology , Forced Expiratory Volume , Humans , Maintenance Chemotherapy , Metagenome/drug effects , Middle Aged , Severity of Illness Index , Time Factors , Tobramycin/therapeutic use , Young Adult
9.
PLoS Genet ; 16(6): e1008848, 2020 06.
Article in English | MEDLINE | ID: mdl-32530919

ABSTRACT

Pseudomonas aeruginosa colonizes the airways of cystic fibrosis (CF) patients, causing infections that can last for decades. During the course of these infections, P. aeruginosa undergoes a number of genetic adaptations. One such adaptation is the loss of swimming motility functions. Another involves the formation of the rugose small colony variant (RSCV) phenotype, which is characterized by overproduction of the exopolysaccharides Pel and Psl. Here, we provide evidence that the two adaptations are linked. Using random transposon mutagenesis, we discovered that flagellar mutations are linked to the RSCV phenotype. We found that flagellar mutants overexpressed Pel and Psl in a surface-contact dependent manner. Genetic analyses revealed that flagellar mutants were selected for at high frequencies in biofilms, and that Pel and Psl expression provided the primary fitness benefit in this environment. Suppressor mutagenesis of flagellar RSCVs indicated that Psl overexpression required the mot genes, suggesting that the flagellum stator proteins function in a surface-dependent regulatory pathway for exopolysaccharide biosynthesis. Finally, we identified flagellar mutant RSCVs among CF isolates. The CF environment has long been known to select for flagellar mutants, with the classic interpretation being that the fitness benefit gained relates to an impairment of the host immune system to target a bacterium lacking a flagellum. Our new findings lead us to propose that exopolysaccharide production is a key gain-of-function phenotype that offers a new way to interpret the fitness benefits of these mutations.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions/genetics , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Biosynthetic Pathways/genetics , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Flagella/metabolism , Humans , Mutagenesis, Site-Directed , Mutation , Polysaccharides, Bacterial/biosynthesis , Pseudomonas aeruginosa/pathogenicity , Selection, Genetic
10.
Lancet Respir Med ; 7(12): 1027-1038, 2019 12.
Article in English | MEDLINE | ID: mdl-31727592

ABSTRACT

BACKGROUND: Staphylococcus aureus is the bacterium cultured most often from respiratory secretions of people with cystic fibrosis. Both meticillin-susceptible S aureus and meticillin-resistant S aureus (MRSA) can adapt to form slow-growing, antibiotic-resistant isolates known as small-colony variants that are not routinely identified by clinical laboratories. We aimed to determine the prevalence and clinical significance of S aureus small-colony variants and their subtypes among children with cystic fibrosis. METHODS: The Small Colony Variant Staphylococcus aureus (SCVSA) study was a 2-year longitudinal study of children aged 6-16 years at five US cystic fibrosis centres, using culture methods sensitive for small-colony variants. Children were eligible if they had a documented diagnosis of cystic fibrosis and a minimum of two cystic fibrosis clinic visits and two respiratory cultures in the previous 12 months at enrolment. Participants attended clinic visits quarterly, at which respiratory tract samples were taken and measures of lung function (percentage of predicted forced expiratory volume in 1 s [FEV1] and frequency of respiratory exacerbations) were recorded. We determined the prevalence of small-colony variants and their subtypes, and assessed their independent associations with lung function and respiratory exacerbations using linear mixed-effects and generalised estimating equation logistic regression models. Analyses included both univariate models (unadjusted) and multivariate models that adjusted for potential confounders, including age, sex, race, baseline microbiology, treatment with CFTR modulator, and CTFR genotype. FINDINGS: Between July 1, 2014, and May 26, 2015, we enrolled 230 children. Participants were followed-up for 2 years, with a mean of 6·4 visits (SD 1·14) per participant (range 2-9 visits) and a mean interval between visits of 3·94 months (SD 1·77). Across the 2-year period, S aureus small-colony variants were detected in 64 (28%) participants. Most (103 [56%] of 185) of the small-colony variants detected in these participants were thymidine dependent. Children with small-colony variants had significantly lower mean percentage of predicted FEV1 at baseline than did children without small-colony variants (85·5 [SD 19] vs 92·4 [SD 18·6]; p=0·0145). Small-colony variants were associated with significantly lower percentage of predicted FEV1 throughout the study in regression models, both in univariate analyses (regression coefficient -7·07, 95% CI -12·20 to -1·95; p=0·0068) and in multivariate analyses adjusting for potential confounders (-5·50, -10·51 to -0·48; p=0·0316). Small colony variants of the thymidine-dependent subtype had the strongest association with lung function in multivariate regression models (regression coefficient -10·49, -17·25 to -3·73; p=0·0024). Compared with children without small-colony variants, those with small-colony variants had significantly increased odds of respiratory exacerbations in univariate analyses (odds ratio 1·73, 95% CI 1·19 to 2·52; p=0·0045). Children with thymidine-dependent small-colony variants had significantly increased odds of respiratory exacerbations (2·81, 1·69-4·67; p=0·0001), even after adjusting for age, sex, race, genotype, CFTR modulator, P aeruginosa culture status, and baseline percentage of predicted FEV1 (2·17, 1·33-3·57; p=0·0021), whereas those with non-thymidine-dependent small-colony variants did not. In multivariate models including small-colony variants and MRSA status, P aeruginosa was not independently associated with lung function (regression coefficient -4·77, 95% CI -10·36 to 0·83; p=0·10) and was associated with reduced odds of exacerbations (0·54, 0·36 to 0·81; p=0·0028). Only the small-colony variant form of MRSA was associated with reduced lung function (-8·44, -16·15 to -0·72; p=0·0318) and increased odds of exacerbations (2·15, 1·24 to 3·71; p=0·0061). INTERPRETATION: Infection with small-colony variants, and particularly thymidine-dependent small-colony variants, was common in a multicentre paediatric population with cystic fibrosis and associated with reduced lung function and increased risk of respiratory exacerbations. The adoption of small-colony variant identification and subtyping methods by clinical laboratories, and the inclusion of small-colony variant prevalence data in cystic fibrosis registries, should be considered for ongoing surveillance and study. FUNDING: The Cystic Fibrosis Foundation and the National Institutes of Health.


Subject(s)
Cystic Fibrosis/complications , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/microbiology , Adolescent , Child , Female , Forced Expiratory Volume , Humans , Longitudinal Studies , Male , Prospective Studies , Respiratory Function Tests , Staphylococcal Infections/complications , Staphylococcal Infections/diagnosis
11.
Cell Rep ; 26(8): 2227-2240.e5, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30784601

ABSTRACT

Metagenomic sequencing is a promising approach for identifying and characterizing organisms and their functional characteristics in complex, polymicrobial infections, such as airway infections in people with cystic fibrosis. These analyses are often hampered, however, by overwhelming quantities of human DNA, yielding only a small proportion of microbial reads for analysis. In addition, many abundant microbes in respiratory samples can produce large quantities of extracellular bacterial DNA originating either from biofilms or dead cells. We describe a method for simultaneously depleting DNA from intact human cells and extracellular DNA (human and bacterial) in sputum, using selective lysis of eukaryotic cells and endonuclease digestion. We show that this method increases microbial sequencing depth and, consequently, both the number of taxa detected and coverage of individual genes such as those involved in antibiotic resistance. This finding underscores the substantial impact of DNA from sources other than live bacteria in microbiological analyses of complex, chronic infection specimens.


Subject(s)
Bacterial Infections/microbiology , DNA Barcoding, Taxonomic/methods , Metagenome , Metagenomics/methods , Microbiota , Sputum/microbiology , Bacterial Infections/diagnosis , Humans , Molecular Diagnostic Techniques/methods , Respiratory Mucosa/metabolism , Respiratory Mucosa/microbiology
12.
Am J Respir Crit Care Med ; 195(12): 1617-1628, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28222269

ABSTRACT

RATIONALE: Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. OBJECTIVES: To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. METHODS: We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. MEASUREMENTS AND MAIN RESULTS: Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. CONCLUSIONS: Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.


Subject(s)
Aminophenols/therapeutic use , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis/drug therapy , Inflammation/prevention & control , Quinolones/therapeutic use , Respiratory Tract Infections/prevention & control , Adult , Chloride Channel Agonists/therapeutic use , Cystic Fibrosis/diagnostic imaging , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Female , Humans , Inflammation/metabolism , Lung/diagnostic imaging , Lung/metabolism , Male , Respiratory Tract Infections/metabolism , Sputum/drug effects , Sputum/metabolism , Tomography, X-Ray Computed
13.
J Craniomaxillofac Surg ; 45(1): 99-107, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27986365

ABSTRACT

OBJECTIVE: There is a high demand for temporary wound dressings that improve wound healing and regeneration. Silicon (as SiO2) has been shown to support the growth and collagen formation in biological systems. METHODS: A nanocomposite was made from PVP (polyvinylpyrrolidon), nano-sized silica aggregates and water and served for fabrication of a wet dressing material (SiO2-PVP gel, by cross-linking the gel) and a freeze-dried dressing material (SiO2-PVP fleece). Materials were characterized by SAXS, DSC, EDX and viscosity measurements. A 10 mm circular defect was set on both sides of the back of SKH1-hr mice (n = 40) and both dressing materials were compared with untreated controls. After 3, 6, 9, 12 and 15 days, the defect regions were explanted and evaluated by histomorphometric measurements and CD31-immunohistochemistry. RESULTS: The microstructure of the compound was composed of fiber like structures. SiO2 nano-aggregates inside the composite remained stable and embedded in a rigid amorphous PVP fraction. In animal experiments, all groups showed a non-irritated defect closure after 9 days. EDX of SiO2-PVP gel and fleeces revealed SiO2-PVP diffusion into the wound. Wound contraction was significantly enhanced after treatment with SiO2-PVP gel followed by SiO2-PVP fleece compared to controls. Re-epithelialization was increased in SiO2-PVP treated wounds and the regenerated epidermis showed a well-differentiated layer structure compared to untreated controls. CONCLUSIONS: The results indicate that silica diffuses from the dressing into the wound. Both dressings affect the wound healing. The SiO2-based wound dressing may counteract scarring and might be suitable as a temporary wound dressing.


Subject(s)
Bandages , Dermatologic Surgical Procedures/methods , Povidone/therapeutic use , Silicon Dioxide/therapeutic use , Animals , Mice , Mice, Hairless , Nanocomposites/therapeutic use , Viscosity
14.
mBio ; 7(5)2016 10 04.
Article in English | MEDLINE | ID: mdl-27703072

ABSTRACT

Chronic Pseudomonas aeruginosa infections cause significant morbidity in patients with cystic fibrosis (CF). Over years to decades, P. aeruginosa adapts genetically as it establishes chronic lung infections. Nonsynonymous mutations in lasR, the quorum-sensing (QS) master regulator, are common in CF. In laboratory strains of P. aeruginosa, LasR activates transcription of dozens of genes, including that for another QS regulator, RhlR. Despite the frequency with which lasR coding variants have been reported to occur in P. aeruginosa CF isolates, little is known about their consequences for QS. We sequenced lasR from 2,583 P. aeruginosa CF isolates. The lasR sequences of 580 isolates (22%) coded for polypeptides that differed from the conserved LasR polypeptides of well-studied laboratory strains. This collection included 173 unique lasR coding variants, 116 of which were either missense or nonsense mutations. We studied 31 of these variants. About one-sixth of the variant LasR proteins were functional, including 3 with nonsense mutations, and in some LasR-null isolates, genes that are LasR dependent in laboratory strains were nonetheless expressed. Furthermore, about half of the LasR-null isolates retained RhlR activity. Therefore, in some CF isolates the QS hierarchy is altered such that RhlR quorum sensing is independent of LasR regulation. Our analysis challenges the view that QS-silent P. aeruginosa is selected during the course of a chronic CF lung infection. Rather, some lasR sequence variants retain functionality, and many employ an alternate QS strategy involving RhlR. IMPORTANCE: Chronic Pseudomonas aeruginosa infections, such as those in patients with the genetic disease cystic fibrosis, are notable in that mutants with defects in the quorum-sensing transcription factor LasR frequently arise. In laboratory strains of P. aeruginosa, quorum sensing activates transcription of dozens of genes, many of which encode virulence factors, such as secreted proteases and hydrogen cyanide synthases. In well-studied laboratory strains, LasR-null mutants have a quorum-sensing-deficient phenotype. Therefore, the presence of LasR variants in chronic infections has been interpreted to indicate that quorum-sensing-regulated products are not important for those infections. We report that some P. aeruginosa LasR variant clinical isolates are not LasR-null mutants, and others have uncoupled a second quorum-sensing system, the RhlR system, from LasR regulation. In these uncoupled isolates, RhlR independently activates at least some quorum-sensing-dependent genes. Our findings suggest that quorum sensing plays a role in chronic P. aeruginosa infections, despite the emergence of LasR coding variants.


Subject(s)
Bacterial Proteins/genetics , Genetic Variation , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/physiology , Quorum Sensing , Trans-Activators/genetics , Bacterial Proteins/metabolism , Codon, Nonsense , Cystic Fibrosis/complications , Gene Expression Regulation, Bacterial , Humans , Mutation, Missense , Pseudomonas aeruginosa/isolation & purification , Sequence Analysis, DNA , Trans-Activators/metabolism
15.
mBio ; 7(3)2016 05 24.
Article in English | MEDLINE | ID: mdl-27222468

ABSTRACT

UNLABELLED: While considerable research has focused on the properties of individual bacteria, relatively little is known about how microbial interspecies interactions alter bacterial behaviors and pathogenesis. Staphylococcus aureus frequently coinfects with other pathogens in a range of different infectious diseases. For example, coinfection by S. aureus with Pseudomonas aeruginosa occurs commonly in people with cystic fibrosis and is associated with higher lung disease morbidity and mortality. S. aureus secretes numerous exoproducts that are known to interact with host tissues, influencing inflammatory responses. The abundantly secreted S. aureus staphylococcal protein A (SpA) binds a range of human glycoproteins, immunoglobulins, and other molecules, with diverse effects on the host, including inhibition of phagocytosis of S. aureus cells. However, the potential effects of SpA and other S. aureus exoproducts on coinfecting bacteria have not been explored. Here, we show that S. aureus-secreted products, including SpA, significantly alter two behaviors associated with persistent infection. We found that SpA inhibited biofilm formation by specific P. aeruginosa clinical isolates, and it also inhibited phagocytosis by neutrophils of all isolates tested. Our results indicate that these effects were mediated by binding to at least two P. aeruginosa cell surface structures-type IV pili and the exopolysaccharide Psl-that confer attachment to surfaces and to other bacterial cells. Thus, we found that the role of a well-studied S. aureus exoproduct, SpA, extends well beyond interactions with the host immune system. Secreted SpA alters multiple persistence-associated behaviors of another common microbial community member, likely influencing cocolonization and coinfection with other microbes. IMPORTANCE: Bacteria rarely exist in isolation, whether on human tissues or in the environment, and they frequently coinfect with other microbes. However, relatively little is known about how microbial interspecies interactions alter bacterial behaviors and pathogenesis. We identified a novel interaction between two bacterial species that frequently infect together-Staphylococcus aureus and Pseudomonas aeruginosa We show that the S. aureus-secreted protein staphylococcal protein A (SpA), which is well-known for interacting with host targets, also binds to specific P. aeruginosa cell surface molecules and alters two persistence-associated P. aeruginosa behaviors: biofilm formation and uptake by host immune cells. Because S. aureus frequently precedes P. aeruginosa in chronic infections, these findings reveal how microbial community interactions can impact persistence and host interactions during coinfections.


Subject(s)
Microbial Interactions , Pseudomonas aeruginosa/metabolism , Staphylococcal Protein A/metabolism , Staphylococcus aureus/metabolism , Biofilms/drug effects , Coculture Techniques , Cystic Fibrosis/microbiology , Fimbriae, Bacterial/metabolism , Humans , Neutrophils/drug effects , Neutrophils/microbiology , Phagocytosis/drug effects , Polysaccharides, Bacterial/metabolism , Protein Binding , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Staphylococcal Infections/microbiology , Staphylococcal Protein A/pharmacology , Staphylococcus aureus/chemistry , Surface Properties
16.
Antimicrob Agents Chemother ; 60(3): 1725-35, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26729501

ABSTRACT

Staphylococcus aureus small-colony variants (SCVs) emerge frequently during chronic infections and are often associated with worse disease outcomes. There are no standardized methods for SCV antibiotic susceptibility testing (AST) due to poor growth and reversion to normal-colony (NC) phenotypes on standard media. We sought to identify reproducible methods for AST of S. aureus SCVs and to determine whether SCV susceptibilities can be predicted on the basis of treatment history, SCV biochemical type (auxotrophy), or the susceptibilities of isogenic NC coisolates. We tested the growth and stability of SCV isolates on 11 agar media, selecting for AST 2 media that yielded optimal SCV growth and the lowest rates of reversion to NC phenotypes. We then performed disk diffusion AST on 86 S. aureus SCVs and 28 isogenic NCs and Etest for a subset of 26 SCVs and 24 isogenic NCs. Growth and reversion were optimal on brain heart infusion agar and Mueller-Hinton agar supplemented with compounds for which most clinical SCVs are auxotrophic: hemin, menadione, and thymidine. SCVs were typically nonsusceptible to either trimethoprim-sulfamethoxazole or aminoglycosides, in accordance with the auxotrophy type. In contrast, SCVs were variably nonsusceptible to fluoroquinolones, macrolides, lincosamides, fusidic acid, and rifampin; mecA-positive SCVs were invariably resistant to cefoxitin. All isolates (both SCVs and NCs) were susceptible to quinupristin-dalfopristin, vancomycin, minocycline, linezolid, chloramphenicol, and tigecycline. Analysis of SCV auxotrophy type, isogenic NC antibiograms, and antibiotic treatment history had limited utility in predicting SCV susceptibilities. With clinical correlation, this AST method and these results may prove useful in directing treatment for SCV infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Aminoglycosides/pharmacology , Bacterial Proteins/genetics , Cefoxitin/pharmacology , Fluoroquinolones/pharmacology , Fusidic Acid/pharmacology , Humans , Lincosamides/pharmacology , Macrolides/pharmacology , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Rifampin/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcus aureus/isolation & purification , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology
17.
Aggress Behav ; 41(4): 335-45, 2015.
Article in English | MEDLINE | ID: mdl-24975724

ABSTRACT

Bullying and victimization are serious problems within prisons. Young Offender Institutions (YOIs), in particular, suffer from high rates of inmate-on-inmate violence. More recent theories about the development of bullying in closed custody institutions imply a relationship between the experience of victimization and the usage of bullying. In our study, we test this linkage using longitudinal survey data taken at two time-points from 473 inmates (aged 15-24) inside three YOIs in Germany. We first analyze the extent of bullying and victimization, and then used a longitudinal structural equation model to predict inmate bullying behavior at time 2 based on victimization that occurred at time 1. Age is used as a predictor variable to account for differences in the amount of victimization and bullying. Results suggest that bullying and victimization are high in the YOIs, which were subject to research. Most inmates reported being a bully and a victim at the same time. Younger inmates use more direct physical bullying but not psychological bullying. An increase in psychological bullying over time can significantly be explained by victimization at an earlier measurement time point. Our study therefore supports recent theoretical assumptions about the development of bullying behavior. Possible implications for prevention and intervention are discussed.


Subject(s)
Adolescent Behavior/psychology , Bullying/physiology , Crime Victims/psychology , Juvenile Delinquency/psychology , Adolescent , Adult , Humans , Longitudinal Studies , Male , Models, Psychological , Prisons , Young Adult
18.
Cell Host Microbe ; 16(4): 427-9, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25299327

ABSTRACT

In this issue of Cell Host & Microbe, Hammer et al. (2014) show that distinct, slow-growing bacteria have better in vitro and in vivo growth and virulence when cocultured than in isolation. They provide evidence that the observed inter- and intraspecies "complementation" involves the intercellular exchange of metabolites.


Subject(s)
Humans
19.
Am J Respir Crit Care Med ; 190(3): 289-97, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24937177

ABSTRACT

RATIONALE: Pseudomonas aeruginosa undergoes phenotypic changes during cystic fibrosis (CF) lung infection. Although mucoidy is traditionally associated with transition to chronic infection, we hypothesized that additional in vitro phenotypes correlate with this transition and contribute to disease. OBJECTIVES: To characterize the relationships between in vitro P. aeruginosa phenotypes, infection stage, and clinical outcomes. METHODS: A total of 649 children with CF and newly identified P. aeruginosa were followed for a median 5.4 years during which a total of 2,594 P. aeruginosa isolates were collected. Twenty-six in vitro bacterial phenotypes were assessed among the isolates, including measures of motility, exoproduct production, colony morphology, growth, and metabolism. MEASUREMENTS AND MAIN RESULTS: P. aeruginosa phenotypes present at the time of culture were associated with both stage of infection (new onset, intermittent, or chronic) and the primary clinical outcome, occurrence of a pulmonary exacerbation (PE) in the subsequent 2 years. Two in vitro P. aeruginosa phenotypes best distinguished infection stages: pyoverdine production (31% of new-onset cultures, 48% of intermittent, 69% of chronic) and reduced protease production (31%, 39%, and 65%, respectively). The best P. aeruginosa phenotypic predictors of subsequent occurrence of a PE were mucoidy (odds ratio, 1.75; 95% confidence interval, 1.19-2.57) and reduced twitching motility (odds ratio, 1.43; 95% confidence interval, 1.11-1.84). CONCLUSIONS: In this large epidemiologic study of CF P. aeruginosa adaptation, P. aeruginosa isolates exhibited two in vitro phenotypes that best distinguished early and later infection stages. Among the many phenotypes tested, mucoidy and reduced twitching best predicted subsequent PE. These phenotypes indicate potentially useful prognostic markers of transition to chronic infection and advancing lung disease.


Subject(s)
Cystic Fibrosis/complications , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Adolescent , Child , Child, Preschool , Cystic Fibrosis/microbiology , Disease Progression , Female , Humans , In Vitro Techniques , Infant , Logistic Models , Male , Multicenter Studies as Topic , Outcome Assessment, Health Care , Phenotype , Prospective Studies , Pseudomonas Infections/genetics , Pseudomonas aeruginosa/isolation & purification
20.
Clin Infect Dis ; 59(5): 624-31, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24863401

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa is a key respiratory pathogen in people with cystic fibrosis (CF). Due to its association with lung disease progression, initial detection of P. aeruginosa in CF respiratory cultures usually results in antibiotic treatment with the goal of eradication. Pseudomonas aeruginosa exhibits many different phenotypes in vitro that could serve as useful prognostic markers, but the relative relationships between these phenotypes and failure to eradicate P. aeruginosa have not been well characterized. METHODS: We measured 22 easily assayed in vitro phenotypes among the baseline P. aeruginosa isolates collected from 194 participants in the 18-month EPIC clinical trial, which assessed outcomes after antibiotic eradication therapy for newly identified P. aeruginosa. We then evaluated the associations between these baseline isolate phenotypes and subsequent outcomes during the trial, including failure to eradicate after antipseudomonal therapy, emergence of mucoidy, and occurrence of an exacerbation. RESULTS: Baseline P. aeruginosa isolates frequently exhibited phenotypes thought to represent chronic adaptation, including mucoidy. Wrinkly colony surface and irregular colony edges were both associated with increased risk of eradication failure (hazard ratios [95% confidence intervals], 1.99 [1.03-3.83] and 2.14 [1.32-3.47], respectively). Phenotypes reflecting defective quorum sensing were significantly associated with subsequent mucoidy, but no phenotype was significantly associated with subsequent exacerbations during the trial. CONCLUSIONS: Pseudomonas aeruginosa phenotypes commonly considered to reflect chronic adaptation were observed frequently among isolates at early detection. We found that 2 easily assayed colony phenotypes were associated with failure to eradicate after antipseudomonal therapy, both of which have been previously associated with altered biofilm formation and defective quorum sensing.


Subject(s)
Cystic Fibrosis/microbiology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas Infections/prevention & control , Pseudomonas aeruginosa/cytology , Pseudomonas aeruginosa/physiology , Biofilms/drug effects , Child , Child, Preschool , Cystic Fibrosis/complications , Female , Genotype , Glycosaminoglycans/analysis , Humans , Infant , Male , Phenotype , Pseudomonas Infections/etiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL
...