Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 580: 700-708, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32712476

ABSTRACT

Graphene is attractive as a functional 2D surfactant for polymerized high internal phase emulsions (polyHIPEs) due to its remarkable mechanical and electrical properties. We have developed polyHIPEs stabilized by pristine, unoxidized graphene via the spontaneous exfoliation of graphite at high-energy aqueous/organic interfaces. The exfoliated graphene self-assembles into a percolating network and incorporates into the polyHIPE cell walls as verified by TEM. The resulting composites showed compressive strengths of 7.0 MPa at densities of 0.22 g/cm3 and conductivities up to 0.36 S/m. Systematically reducing the concentration of monomer in the oil phase by dilution with a porogenic-acting solvent increased the porosity and lowered the density of the polyHIPEs. Characterization of these composites indicated that graphene's high compressive strength and modulus was transferred to the polyHIPEs and provided mechanical reinforcement even at low polymer content. SEM showed that the morphology of the polymer changed with decreasing monomer content while the graphene lined cells retained their shape. Moreover, we show that the polyHIPEs contain a continuous graphene percolating network resulting in electrically conductive materials at low graphene loading.

2.
ACS Appl Mater Interfaces ; 11(35): 32339-32345, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31408317

ABSTRACT

Highly conductive, metal-like poly(ethylene terephthalate) (PET) nonwoven fabric was prepared by coating poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) containing dimethyl sulfoxide (DMSO) onto PET nonwoven fabric previously coated with graphene/graphite. The sheet resistance of the original nonwoven fabric decreases from >80 MΩ□-1 to 1.1 Ω□-1 after coating with 10.7 wt % graphene and 5.48 wt % PEDOT:PSS with a maximum current at breakdown of 4 A. This sheet resistance is lower than previously reported sheet resistances of fabrics coated with graphene films, PEDOT:PSS films, or PEDOT:PSS coated fabrics from the literature. The effect of temperature on the resistance of graphene/PEDOT:PSS coated fabric has revealed that the resistance decreases with increasing temperature, analogous to semiconductors, with a clear semiconductor-metal transition occurring at 290 K. Finally, a coating of 18 wt % graphene/graphite and 2.5 wt % PEDOT:PSS (Rs = 5.5 Ω□-1) screen printed on the nonwoven fabric was shown to function as an electrode for electrocardiography without any hydrogel and with dry skin conditions. This composite coating finds application in wearable electronics for military and consumer sectors.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Electrocardiography , Polymers , Textiles , Adult , Electrodes , Humans , Male
3.
Adv Mater ; 29(18)2017 May.
Article in English | MEDLINE | ID: mdl-28262992

ABSTRACT

Driven by the surface activity of graphene, electrically conductive elastomeric foams have been synthesized by the controlled reassembly of graphene sheets; from their initial stacked morphology, as found in graphite, to a percolating network of exfoliated sheets, defining hollow spheres. This network creates a template for the formation of composite foams, whose swelling behavior is sensitive to the composition of the solvent, and whose electrical resistance is sensitive to physical deformation. The self-assembly of graphene sheets is driven thermodynamically, as graphite is found to act as a 2D surfactant and is spread at high-energy interfaces. This spreading, or exfoliation, of graphite at an oil/water interface stabilizes water-in-oil emulsions, without the need for added surfactants or chemical modification of the graphene. Using a monomer such as butyl acrylate for the emulsion's oil phase, elastomeric foams are created by polymerizing the continuous oil phase. Removal of the aqueous phase then results in robust, conductive, porous, and inexpensive composites, with potential applications in energy storage, filtration, and sensing.

4.
ACS Nano ; 7(8): 7062-6, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23879536

ABSTRACT

Graphite's insolubility in conventional solvents is a major obstacle to its utilization. This challenge is typically addressed by chemical modification such as oxidation, followed by reduction. However, pristine graphene possesses superior properties as oxidation and reduction lead to degradation of the graphene. Here we demonstrate the use of an interfacial trapping technique to assemble laterally macroscopic films of pristine graphene that are up to 95% transparent. This is accomplished by modest sonication of natural flake graphite in a water/heptane mixture to form continuous films at the interface between two immiscible liquids. Furthermore, the graphene sheets readily climb hydrophilic solid substrates, forming a homogeneous thin film one to four layers thick. These films are composed of a network of overlapping graphene sheets and shown to have long-range structure with conductivities on the order of 400 S/cm.

SELECTION OF CITATIONS
SEARCH DETAIL
...