Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Polym Mater ; 6(6): 3517-3522, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38544970

ABSTRACT

Polyurethane coatings have strong material properties due to the hydrogen bonding inherent to the urethane groups. However, installing this urethane moiety usually requires curing through difficult-to-handle isocyanates. In this work, we show the development of a polyurethane-based crosslinker that can be used to formulate a one-component polyurethane coating with material properties similar to those of isocyanate-based polyurethane coatings. To achieve this, we used diazirine functionalities that generate carbenes upon heating, which react with alcohol functionalities in a polyol to generate a crosslinked network with a high storage modulus.

2.
Macromol Rapid Commun ; 44(21): e2300380, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37595267

ABSTRACT

The thermal curing of industrial coatings (e.g., car painting and metal coil coatings) is accompanied by a substantial energy consumption due to the intrinsically high temperatures required during the curing process. Therefore, the development of new photochemical curing processes-preferably using visible light-is in high demand. This work describes new diazo-based cross-linkers that can be used to photocure acrylic coatings using blue light. This work demonstrates that the structure of the tethered diazo compounds influences the cross-linking efficiency, finding that side reactions are suppressed upon engineering greater molecular flexibility. Importantly, this work shows that these diazo compounds can be employed as either thermal or photochemical cross-linkers, exhibiting identical crosslinking performances. The performance of diazo-cross-linked coatings is evaluated to reveal excellent water resistance and demonstrably similar material properties to UV-cured acrylates. These studies pave the way for further usage of diazo-functionalized cross-linkers in the curing of paints and coatings.


Subject(s)
Azo Compounds , Light , Azo Compounds/chemistry , Photochemical Processes
3.
Catal Sci Technol ; 12(7): 2056-2060, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35444794

ABSTRACT

Kinetic analysis of polyesterification reactions using Lewis-acidic metal catalysts have been performed. While Sn-based catalysts are superior to Ti-based catalysts under neat polycondensation conditions (high [H2O]), the result is inverted under azeotropic conditions (low [H2O]). These findings show that the catalytic activity is crucially determined by the robustness of the catalyst against hydrolytic degradation.

4.
J Am Chem Soc ; 143(48): 20501-20512, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34802239

ABSTRACT

The metallo-radical activation of ortho-allylcarbonyl-aryl N-arylsulfonylhydrazones with the paramagnetic cobalt(II) porphyrin catalyst [CoII(TPP)] (TPP = tetraphenylporphyrin) provides an efficient and powerful method for the synthesis of novel 8-membered heterocyclic enol ethers. The synthetic protocol is versatile and practical and enables the synthesis of a wide range of unique 1H-2-benzoxocins in high yields. The catalytic cyclization reactions proceed with excellent chemoselectivities, have a high functional group tolerance, and provide several opportunities for the synthesis of new bioactive compounds. The reactions are shown to proceed via cobalt(III)-carbene radical intermediates, which are involved in intramolecular hydrogen transfer (HAT) from the allylic position to the carbene radical, followed by a near-barrierless radical rebound step in the coordination sphere of cobalt. The proposed mechanism is supported by experimental observations, density functional theory (DFT) calculations, and spin trapping experiments.

5.
Catal Sci Technol ; 11(10): 3326-3332, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-34123363

ABSTRACT

Monoalkyltin(iv) complexes are well-known catalysts for esterification reactions and polyester formation, yet the mode of operation of these Lewis acidic complexes is still unknown. Here, we report on mechanistic studies of n-butylstannoic acid in stoichiometric and catalytic reactions, analyzed by NMR, IR and MS techniques. While the chemistry of n-butyltin(iv) carboxylates is dominated by formation of multinuclear tin assemblies, we found that under catalytically relevant conditions only monomeric n-BuSn(OAc)3 and dimeric (n-BuSnOAc2OEt)2 are present. Density functional theory (DFT) calculations provide support for a mononuclear mechanism, where n-BuSn(OAc)3 and dimeric (n-BuSnOAc2OEt)2 are regarded as off-cycle species, and suggest that carbon-oxygen bond breaking is the rate-determining step.

6.
ACS Catal ; 9(2): 1197-1210, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30775066

ABSTRACT

1-Hexene is an important α-olefin for polyethylene production and is produced from ethene. Recent developments in the α-olefin industry have led to the successful commercialization of ethene trimerization catalysts. An important industrially applied ethene trimerization system uses a mixture of chromium 2-ethylhexanoate, AlEt3, AlEt2Cl, and 2,5-dimethylpyrrole (DMP). Here, we have studied the activation of this system using catalytic and spectroscopic experiments (XAS, EPR, and UV-vis) under conditions employed in industry. First, chromium 2-ethylhexanoate was prepared and characterized to be [Cr3O(RCO2)6(H2O)3]Cl. Next, the activation of chromium 2-ethylhexanoate with AlEt3, AlEt2Cl, and DMP was studied, showing immediate reduction (<5 ms) of the trinuclear Cr(III) carboxylate and formation of a neutral polynuclear Cr(II) carboxylate complex. Over time, this Cr(II) carboxylate complex is partially converted into a chloro-bridged dinuclear Cr(II) pyrrolyl complex. In cyclohexane, small quantities of an unknown Cr(I) complex (∼1% after 1 h) are observed, while in toluene, the quantity of Cr(I) is much higher (∼23% after 1 h). This is due to the formation of cationic bis(tolyl)Cr(I) complexes, which likely leads to the observed inferior performance using toluene as the reaction solvent. Catalytic studies allow us to exclude some of the observed Cr(I) and Cr(II) complexes as the active species in this catalytic system. Using this combination of techniques, we have been able to structurally characterize complexes of this selective Cr-catalyzed trimerization system under conditions which are employed in industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...