Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 219: 115914, 2024 01.
Article in English | MEDLINE | ID: mdl-37956895

ABSTRACT

An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.


Subject(s)
Heart Failure , Neoplasms , Humans , Heart Failure/drug therapy , Heart Failure/metabolism , Myocardium/metabolism , Fibroblasts/metabolism , Extracellular Matrix/metabolism , Neoplasms/metabolism , Ventricular Remodeling
2.
JACC CardioOncol ; 2(5): 774-787, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33437965

ABSTRACT

BACKGROUND: Doxorubicin (DOX) induces cardiotoxicity in part by activation of matrix metalloproteinases (MMPs). Sacubitril/valsartan (Sac/Val) exerts additive cardioprotective actions over renin-angiotensin-aldosterone inhibitors in preclinical models of myocardial infarction and in heart failure patients. We hypothesized that Sac/Val would be more cardioprotective than Val in a rodent model of progressive DOX-induced cardiotoxicity, and this benefit would be associated with modulation of MMP activation. OBJECTIVES: We sought to investigate the efficacy of Sac/Val for the treatment of anthracycline-induced cardiotoxicity. METHODS: Male Wistar rats received DOX intraperitoneally (15 mg/kg cumulative) or saline over 3 weeks. Following the first treatment, control animals were gavaged daily with water (n = 25), while DOX-treated animals were gavaged daily with water (n = 25), Val (31 mg/kg; n = 25) or Sac/Val (68 mg/kg; n = 25) for either 4 or 6 weeks. Echocardiography was performed at baseline, and 4 and 6 weeks after DOX initiation. In addition, myocardial MMP activity was assessed with 99mTc-RP805, and cardiotoxicity severity was assessed by histology at these time points in a subgroup of animals. RESULTS: Left ventricular ejection fraction decreased by 10% at 6 weeks in DOX and DOX + Val rats (both p < 0.05), while this reduction was attenuated in DOX + Sac/Val rats. MMP activity was increased at 6 weeks by 76% in DOX-alone rats, and tended to increase in DOX + Val rats (36%; p = 0.051) but was similar in DOX + Sac/Val rats as compared with time-matched control animals. Both therapies attenuated histological evidence of cellular toxicity and fibrosis (p < 0.05). CONCLUSIONS: Sac/Val offers greater protection against left ventricular remodeling and dysfunction compared with standard angiotensin receptor blocker therapy in a rodent model of progressive DOX-induced cardiotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...