Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cell Biol Toxicol ; 39(6): 3197-3217, 2023 12.
Article in English | MEDLINE | ID: mdl-37603122

ABSTRACT

Wnt signaling is a principal pathway regulating the essential activities of cell proliferation. Here, we investigated the effect of Wnt/ß-catenin signaling on in vivo drug-induced renal injury through the deletion of Dact2, a Wnt antagonist, and deciphered the underlying mechanism. Wild-type (WT) and Dact2 knockout (KO) mice were administered a single intraperitoneal injection of cisplatin to induce renal injury. The injury was alleviated in Dact2 KO mice, which showed lower levels of blood urea nitrogen and creatinine. RNA sequencing revealed 194 differentially expressed genes (DEGs) between WT and Dact2 KO mouse kidney before cisplatin treatment. Among them, higher levels of Igf1, one of the Wnt target genes responsible for "Positive regulation of cell proliferation" in KO mice, were confirmed along with the induction of Ki67 expression. In RNA-seq analysis comparing WT and Dact2 KO mice after cisplatin treatment, genes related to "Apoptosis" and "Activation of mitogen-activated protein kinase (MAPK) activity" were among the downregulated DEGs in KO mice. These results were corroborated in western blotting of proteins related to apoptosis and proapoptotic MAPK pathway; the expression of which was found to be lower in cisplatin-treated KO mice. Importantly, ß-catenin was found to directly bind to and regulate the transcription of Igf1, leading to the alleviation of cisplatin-induced cytotoxicity by the Wnt agonist, CHIR-99021. In addition, Igf1 knockdown accelerated cisplatin-induced cytotoxicity, accompanied by the MAPK upregulation. Our findings suggest that Dact2 knockout could protect cisplatin-induced nephrotoxicity by inhibiting apoptosis, possibly through the regulation of the Igf1-MAPK axis associated with Wnt/ß-catenin signaling.


Subject(s)
Cisplatin , beta Catenin , Mice , Animals , Cisplatin/pharmacology , beta Catenin/metabolism , Mitogen-Activated Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Wnt Signaling Pathway , Apoptosis
2.
Toxicol Res ; 39(3): 443-453, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37398564

ABSTRACT

Drug-induced liver injury (DILI) is a major cause of acute liver failure and drug withdrawal. Cytochrome P450 (CYP) 2E1 is involved in the metabolism of several drugs, and can induce liver injury through the production of toxic metabolites and the generation of reactive oxygen species. This study aimed to elucidate the role of Wnt/ß-catenin signaling in CYP2E1 regulation for drug-induced hepatotoxicity. To achieve this, mice were administered cisplatin or acetaminophen (APAP) 1 h after treatment with the CYP2E1 inhibitor dimethyl sulfoxide (DMSO), and histopathological and serum biochemical analyses were performed. APAP treatment induced hepatotoxicity, as evidenced by an increase in liver weight and serum ALT levels. Moreover, histological analysis indicated severe injury, including apoptosis, in the liver tissue of APAP-treated mice, which was confirmed by TUNEL assay. Additionally, APAP treatment suppressed the antioxidant capacity of the mice and increased the expression of the DNA damage markers γ-H2AX and p53. However, these effects of APAP on hepatotoxicity were significantly attenuated by DMSO treatment. Furthermore, the activation of Wnt/ß-catenin signaling using the Wnt agonist CHIR99021 (CHIR) increased CYP2E1 expression in rat liver epithelial cells (WB-F344), whereas treatment with the Wnt/ß-catenin antagonist IWP-2 inhibited nuclear ß-catenin and CYP2E1 expression. Interestingly, APAP-induced cytotoxicity in WB-F344 cells was exacerbated by CHIR treatment and suppressed by IWP-2 treatment. Overall, these results showed that the Wnt/ß-catenin signaling is involved in DILI through the upregulation of CYP2E1 expression by directly binding the transcription factor ß-cat/TCF to the Cyp2e1 promoter, thus exacerbating DILI. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-023-00180-6.

3.
Food Chem Toxicol ; 178: 113890, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37308052

ABSTRACT

Evaluating tissue injury largely depends on serum biochemical analysis despite insufficient tissue specificity and low sensitivity. Therefore, attention has been paid to the potential of microRNAs (miRNAs) to overcome the limitations of the current diagnostic tools, as tissue-enriched miRNAs are detected in the blood upon tissue injury. First, using a cisplatin-injected rats, we screened a specific pattern of altered hepatic miRNAs and their target mRNAs. Subsequently, we identified novel liver-specific circulating miRNAs for drug-induced liver injury by comparing miRNA expression changes in organs and serum. RNA sequencing revealed that 32 hepatic miRNAs were differentially expressed (DE) in the cisplatin-treated group. Furthermore, among the 1217 targets predicted using miRDB on these DE-miRNAs, 153 hepatic genes involved in different liver function-related pathways and processes were found to be dysregulated by cisplatin. Next, comparative analyses of the liver, kidneys, and serum DE-miRNAs were conducted to select circulating miRNA biomarker candidates reflecting drug-induced liver injury. Finally, among the four liver-specific circulating miRNAs selected based on their expression patterns in tissue and serum, miR-532-3p was increased in the serum after cisplatin or acetaminophen administration. Our findings suggest that miR-532-3p is potential as a serum biomarker for identifying drug-induced liver injury, leading to the accurate diagnosis.


Subject(s)
Chemical and Drug Induced Liver Injury , Circulating MicroRNA , MicroRNAs , Rats , Animals , Acetaminophen/toxicity , Cisplatin/toxicity , MicroRNAs/genetics , Biomarkers , Chemical and Drug Induced Liver Injury/genetics
4.
Food Chem Toxicol ; 174: 113695, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36863560

ABSTRACT

Gap junctional intercellular communication (GJIC) is composed of connexin (Cx) and plays an important role in maintaining intracellular homeostasis. Loss of GJIC is involved in the early stages of cancer pathways of non-genotoxic carcinogens; however, the effect of genotoxic carcinogens, including polycyclic aromatic hydrocarbons (PAHs), on GJIC function remains unclear. Therefore, we determined whether and how a representative PAH 7,12-dimethylbenz[a]anthracene (DMBA) suppresses GJIC in WB-F344 cells. First, DMBA significantly inhibited GJIC and dose-dependently reduced Cx43 protein and mRNA expression. In contrast, Cx43 promoter activity was upregulated after DMBA treatment via the induction of specificity protein 1 and hepatocyte nuclear factor 3ß, indicating that the promoter-independent loss of Cx43 mRNA can be associated with the inhibition of mRNA stability, which was verified by actinomycin D assay. In addition to a decrease in mRNA stability involved in human antigen R, we also observed DMBA-induced acceleration of Cx43 protein degradation, which was closely related to the loss of GJIC through Cx43 phosphorylation via MAPK activation. In conclusion, the genotoxic carcinogen DMBA suppresses GJIC by inhibiting post-transcriptional and post-translational processing of Cx43. Our findings suggest that the GJIC assay is an efficient short-term screening test for predicting the carcinogenic potential of genotoxic carcinogens.


Subject(s)
Carcinogens , Connexin 43 , Rats , Animals , Humans , Carcinogens/metabolism , Connexin 43/metabolism , Rats, Inbred F344 , Liver , Cell Communication , Gap Junctions/metabolism , Phosphorylation , Anthracenes/metabolism , Anthracenes/pharmacology , RNA, Messenger/metabolism
5.
Cell Biol Toxicol ; 39(1): 165-182, 2023 02.
Article in English | MEDLINE | ID: mdl-34283317

ABSTRACT

Gap junctional intercellular communication (GJIC) is considered a key biological mechanism to maintain homeostasis in cell differentiation and growth. In addition, as another major signaling pathway associated with cell proliferation and differentiation, Wnt/ß-catenin signaling appears to trigger several cellular responses against injury. The purpose of the present study was to investigate the effects of a known toxic agent, benzo[a]pyrene (BaP), on the regulation and interaction between GJIC and Wnt/ß-catenin signaling. BaP treatment resulted in GJIC inhibition and decreases the major GJIC protein connexin 43 (Cx43) in WB-F344 rat liver epithelial cells. We also found BaP-mediated downregulation of Wnt/ß-catenin signaling related to the PI3K-Akt pathway. To identify the relationship between GJIC and Wnt/ß-catenin signaling, we treated WB-F344 cells with the Wnt agonist CHIR99021 and found that it inhibited GJIC while causing a significant reduction in Cx43 expression at both the mRNA and protein levels, through the repression of promoter activity. This Wnt agonist-mediated GJIC inhibition was confirmed using a small interfering RNA directed against the Wnt antagonist Dact2, indicating that Wnt/ß-catenin signaling negatively regulates GJIC. Despite the inverse correlation between Wnt/ß-catenin signaling and Cx43 promoter activation as indicated by downregulation of ß-catenin nuclear translocation and upregulation of Cx43 promoter activation involving HNF3ß, BaP treatment decreased the Cx43 protein expression, which was associated with protein degradation, possibly through protein kinase C activation. In conclusion, our results revealed the mechanism of BaP-induced inhibition of GJIC and Wnt/ß-catenin signaling. More importantly, linking Wnt/ß-catenin signaling to Cx protein expression will have profound implications in understanding the relationships among different major signaling pathways associated with cell proliferation and differentiation in toxicity.


Subject(s)
Connexin 43 , beta Catenin , Rats , Animals , Connexin 43/metabolism , Connexin 43/pharmacology , Rats, Inbred F344 , beta Catenin/metabolism , Wnt Signaling Pathway , Phosphatidylinositol 3-Kinases/metabolism , Gap Junctions/metabolism , Pyrenes/metabolism , Pyrenes/pharmacology , Nuclear Proteins/metabolism
6.
Pharmaceutics ; 13(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34683877

ABSTRACT

Animal models are used for preclinical toxicity studies, and the need for in vitro alternative methods has been strongly raised. Our study aims to elucidate the potential mechanism of change in EGR1 expression under situations of toxic injury and to develop an Egr1 promoter-luciferase gene reporter assay for an in vitro alternative method for toxicity prediction in drug discovery. We first found an increase in early growth response-1 (EGR1) mRNA/protein expressions in the liver and kidney of cisplatin-treated injured rats. Additionally, the EGR1 protein level was also elevated under situations of ocular injury after sodium lauryl sulfate (SLS) eye drops. These in vivo observations on injury-related EGR1 induction were confirmed by in vitro studies, where human corneal epithelial cells were treated with representative irritants (SLS and benzalkonium chloride) and 17 chemicals having different UN GHS irritant categories. Additionally, our results suggest the involvement of ERK, JNK, p38 MAPK pathways in EGR1 elevation in response to gamma-butyrolactone-induced injury. As EGR1 is considered to be a pivotal factor in proliferation and regeneration, siRNA-mediated knockdown of Egr1 promoted cytotoxic potential through a delay of injury-related recovery. More importantly, the elevation of promoter activities was observed by various irritants in cells transfected with Egr1 promoter-reporter vector. In conclusion, Egr1 can be a potential biomarker in a promoter-reporter system to improve the accuracy of in vitro predictions for ocular irritation.

7.
Free Radic Biol Med ; 174: 100-109, 2021 10.
Article in English | MEDLINE | ID: mdl-34384867

ABSTRACT

Although cisplatin is an effective platinum-based anticancer drug against solid cancer, its availability is limited owing to its adverse side effects. Our study aimed to identify the potential relationship within cisplatin-induced multi-organ physiological changes and genetic factors associated with sex differences in nephrotoxicity susceptibility. To investigate this, mice received a single intraperitoneal injection of cisplatin. Cisplatin administration resulted in renal dysfunction, as evidenced by the elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine) and the degree of histopathological alterations. In particular, along with testicular damage and low testosterone levels, we also observed a decrease in male-specific (CYP3A2) or male-dominant (CYP2B1 and CYP3A1) CYP isoforms in the livers of rats with hepatotoxicity following cisplatin treatment, which may be associated with an imbalance in male hormone regulation caused by renal and testicular injury. Notably, we found that male rats were more susceptible to cisplatin-induced nephrotoxicity, as characterized by histopathological and biochemical analyses. Therefore, RNA sequencing was performed at baseline (pre-treatment) and at 48 h following cisplatin administration (post-treatment) to identify the genes associated with sex differences in nephrotoxicity susceptibility. Gap junctions, which play a role in replenishing damaged cells to maintain tissue homeostasis, and mismatch repair associated with a pathological apoptotic mechanism against cisplatin nephrotoxicity were significantly enriched only in males following cisplatin treatment. Moreover, among the 322 DEGs showing different basal expression patterns between males and females before cisplatin treatment, the male expressed high levels of genes, which are responsible for transmembrane transport and regulation of apoptotic process, pre-cisplatin treatment; additionally, genes involved in the PI3K-Akt signaling pathway and the oxidation-reduction process were significantly lower in males before cisplatin treatment. Collectively, our comprehensive findings provided valuable insight into the potential mechanisms of sex differences in cisplatin-induced nephrotoxicity susceptibility.


Subject(s)
Antineoplastic Agents , Cisplatin , Animals , Antineoplastic Agents/toxicity , Cisplatin/toxicity , Creatinine , Female , Kidney , Male , Mice , Phosphatidylinositol 3-Kinases , Rats , Sex Characteristics , Transcriptome
8.
Phytomedicine ; 91: 153670, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34391081

ABSTRACT

BACKGROUND: Sedum species are reported to possess diverse pharmacological activities in various solid tumors. However, the anticancer functions of Sedum orizyfolium and its constituents have never been determined in human cancers. PURPOSE: The present study focused on addressing the inhibition efficacy of the methanol extract of S. orizyfolium (MESO) and its constituents and the molecular mechanism underlying invasion and epithelial-to-mesenchymal transition (EMT) in oral squamous cell carcinoma (OSCC) cell lines. STUDY DESIGN/METHODS: After MESO treatment, a wound-healing assay, an invasion assay, and immunocytochemistry were performed in OSCC cell lines, coupled with in silico analysis and immunohistochemistry in OSCC patient samples, to investigate the role of the EMT transcription factor Slug. Trehalose, an active component of MESO, was identified through gas chromatography-mass spectrometry. RESULTS: Among the methanol extracts of 18 various wild plants from South Korea, MESO exhibited the highest anticancer functionality in OSCC cells by downregulating Slug expression. In silico analysis and immunohistochemistry indicated that elevated Slug levels are remarkably associated with tumor progression and invasion in patients with OSCC, suggesting that changes in Slug expression alter EMT progression and invasion in OSCC. Notably, treatment with trehalose, a sugar component of MESO, inhibited invasiveness and Slug expression in OSCC cells. CONCLUSION: Cumulatively, this study highlighted the beneficial role of MESO and trehalose in the inhibition of invasiveness of OSCC cells via suppression of Slug expression and suggested a new design for potential chemotherapeutic drugs against OSCC.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Plant Extracts , Sedum , Snail Family Transcription Factors/metabolism , Trehalose/pharmacology , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Cell Movement , Down-Regulation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Methanol , Mouth Neoplasms/drug therapy , Neoplasm Invasiveness , Plant Extracts/pharmacology , Sedum/chemistry , Squamous Cell Carcinoma of Head and Neck
9.
Adv Healthc Mater ; 10(14): e2100497, 2021 07.
Article in English | MEDLINE | ID: mdl-34160141

ABSTRACT

Acute liver failure (ALF) requiring liver transplantation is a disease that occurs due to rapid hepatocellular dysfunction. As liver transplantation has various limitations, including donor scarcity, high cost, and immuno-incompatibility, continuous local delivery of biopharmaceuticals to the liver tissue can be a promising ALF treatment option. Here, the in vivo safety and usability of a 3D-printed implantable drug delivery device for effective ALF treatment is evaluated. The implantable reservoir consists of a 3D-printed container and a semipermeable membrane for repeated administrations of drugs, specifically to the liver tissue. The physical stability and function of the 3D-printed reservoir are confirmed by the mechanical properties and in vitro drug release test, respectively. In mice implanted with the reservoir system, mortality, weight changes, clinical signs, hematological and serum biochemical changes, and organ weight changes are not observed, suggesting no foreign body reaction. The usability of the reservoir system is further evaluated using an ALF model of 70% hepatectomized mice treated with N-acetylcysteine through the system, showing cell-specific regeneration and significant liver injury alleviation. Overall, the 3D-printed reservoir system is safe for studying the therapeutic potential of ALF treatment, and it can be used for the delivery of various active pharmaceutical ingredients.


Subject(s)
Liver Failure, Acute , Pharmaceutical Preparations , Animals , Liver Failure, Acute/drug therapy , Mice , Printing, Three-Dimensional , Treatment Outcome
10.
Free Radic Biol Med ; 148: 128-139, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31911150

ABSTRACT

Clinical cisplatin use is often limited by its drug-induced liver injury (DILI). Particularly, individual differences in susceptibility to DILI can cause life-threatening medical conditions. This study aimed to uncover the inherent genetic factors determining individual variations in hepatotoxicity susceptibility. Rats were subjected to liver biopsy and a 3-week postoperative recovery period before cisplatin administration. At 2 days post-treatment with cisplatin, the rats exhibited histopathological and serum biochemical alterations in the liver, and changes in hydrogen peroxide and cytochrome P450-2E1 levels. Based on these results of liver-related biochemical markers, 32 rats were grouped into the susceptible (top five) and resistant (bottom five) groups. Using RNA-sequencing, we compared gene expressions in the liver pre-biopsied from these two groups before cisplatin treatment and found 161 differently expressed genes between the Susceptible and Resistant groups. Among them, the clock-controlled Ccrn4l responsible for 'rhythmic process' was identified as a common gene downregulated inherently prior to drug exposure in both cisplatin- and acetaminophen-sensitive animals. Additionally, low Ccrn4l levels before cisplatin treatment in the Susceptible group were maintained even after treatment, with decreased antioxidants, increased nitration, and apoptosis. The relationship of Ccrn4l with catalase and mitochondrial RNAs in the liver was confirmed by correlation of their hepatic levels among individuals and similar patterns of circadian variation in their mRNA expression. Remarkably, Ccrn4l knockdown promoted cisplatin-induced mitochondrial dysfunction in WB-F344 cells with antioxidant catalase and apoptosis-related Bax changes. Inherent individual hepatic Ccrn4l level might be a novel factor affecting cisplatin-induced hepatotoxicity susceptibility, possibly through regulation of mitochondrial and antioxidant functions.


Subject(s)
Chemical and Drug Induced Liver Injury , Cisplatin , Acetaminophen , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Cisplatin/toxicity , Liver/metabolism , Oxidative Stress , Rats , Rats, Inbred F344
11.
Pharmaceutics ; 11(9)2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31500241

ABSTRACT

Adjuvants enhance the efficacy of vaccines by stimulating immune response-related gene expression and pathways. Although some adjuvants have been approved for commercial use in human vaccines (e.g., Alum, MF59, and AS03), they might elicit adverse side effects, such as autoimmune diseases. Recently, we developed a novel single-stranded RNA (ssRNA) nano-structure adjuvant, which can stimulate both Th1 and Th2 responses. In this study, we evaluated the safety and toxicological profiles of this ssRNA nano-structure adjuvant in vitro and in vivo. Mice were intramuscularly immunized with the ssRNA nano-structure adjuvant three times, once every 2 weeks. The results indicate no significant differences in hematological and serum biochemistry parameters between the ssRNA-treated groups and the control group. From a histopathological perspective, no evidence of tissue damage was found in any group. The levels of IgE and anti-nuclear antibodies, which are markers of autoimmune disease, were not different between the ssRNA-treated groups and the control group. The findings of this study suggest that the ssRNA nano-structure can be used as a safe adjuvant to increase vaccine efficacies.

12.
J Clin Biochem Nutr ; 64(2): 97-105, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30936621

ABSTRACT

Fisetin was reported to have an anti-proliferative and apoptotic activity as a novel anti-cancer agent in various cancer cell lines. However, the possible molecular targets for the anti-cancer effect of fisetin in human head and neck cancer (HNCC) have not yet been clarified. In this study, the influence of fisetin on the growth and apoptosis of HNCCs were examined. In HSC3 cells, fisetin treatment reduced the viability and induced apoptosis. Through the results from the screening of the expression profile of apoptosis-related genes, sestrin 2 (SESN2) was functionally involved in fisetin-mediated apoptosis showing the knockdown of SESN2 by siRNA clearly restored fisetin-induced apoptosis. In addition, fisetin reduced the protein expression levels of phospho-mTOR (p-mTOR) and Mcl-1, which are the downstream molecules of SESN2. It also induced PARP cleavage by inducing an increase in the expression levels of SESN2 together with reducing mTOR and Mcl-1 proteins in other three HNCCs (MC3, Ca9.22, and HN22). Taken together, our findings suggest that the anti-cancer effect of fisetin on HNCCs is associated with SESN2/mTOR/Mcl-1 signaling axis.

13.
Chem Asian J ; 14(10): 1729-1736, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30604510

ABSTRACT

Triplet photosensitizers that generate singlet oxygen efficiently are attractive for applications such as photodynamic therapy (PDT). Extending the absorption band to a near-infrared (NIR) region (700 nm≈) with reasonable photostability is one of the major demands in the rational design of such sensitizers. We herein prepared a series of mono- and bis-palladium complexes (1-Pd-H2 , 2-Pd-H2 , 1-Pd-Pd, and 2-Pd-Pd) based on modified calix[6]phyrins as photosensitizers for singlet oxygen generation. These palladium complexes showed intense absorption profiles in the visible-to-NIR region (500-750 nm) depending on the number of central metals. Upon photoirradiation in the presence of 1,5-dihydroxynaphthalene (DHN) as a substrate for reactive oxygen species, the bis-palladium complexes generated singlet oxygen with high efficiency and excellent photostability. Singlet oxygen generation was confirmed from the characteristic spectral feature of the spin trapped complex in the EPR spectrum and the intact 1 O2 emission at 1270 nm.

14.
Tumour Biol ; 40(5): 1010428318776170, 2018 May.
Article in English | MEDLINE | ID: mdl-29764340

ABSTRACT

Silymarin, a standardized extract from milk thistle fruits has been found to exhibit anti-cancer effects against various cancers. Here, we explored the anti-cancer activity of silymarin and its molecular target in human oral cancer in vitro and in vivo. Silymarin dose-dependently inhibited the proliferation of HSC-4 oral cancer cells and promoted caspase-dependent apoptosis. A human apoptosis protein array kit showed that death receptor 5 may be involved in silymarin-induced apoptosis, which was also shown through western blotting, immunocytochemistry, and reverse transcription-polymerase chain reaction. Silymarin increased cleaved caspase-8 and truncated Bid, leading to accumulation of cytochrome c. In addition, silymarin activated death receptor 5/caspase-8 to induce apoptotic cell death in two other oral cancer cell lines (YD15 and Ca9.22). Silymarin also suppressed tumor growth and volume without any hepatic or renal toxicity in vivo. Taken together, these results provide in vitro and in vivo evidence supporting the anti-cancer effect of silymarin and death receptor 5, and caspase-8 may be essential players in silymarin-mediated apoptosis in oral cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Mouth Neoplasms/drug therapy , Silymarin/pharmacology , Apoptosis/drug effects , Caspase 8/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cytochromes c/metabolism , Humans , Mouth Neoplasms/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
15.
Mol Med Rep ; 17(4): 5258-5264, 2018 04.
Article in English | MEDLINE | ID: mdl-29363716

ABSTRACT

Potentilla discolor has been used in traditional Chinese medicine for the treatment of hyperglycemia. However, the potential role of Potentilla discolor against cancer and its mode of action remain to be fully elucidated. The present study explored the apoptotic effect of methanol extract of Potentilla discolor (MEPD) in human mucoepidermoid carcinoma (MEC) cell lines of salivary glands. MEPD markedly suppressed the growth and induced apoptotic cell death in MC3 and YD15 cells. MEPD treatment significantly upregulated the expression of PUMA and reduced STAT3 phosphorylation. Overexpression of STAT3 partially recovered the growth of MEC cells inhibited by MEPD. In addition, dephosphorylation of STAT3 by cryptotanshinone (a potent STAT3 inhibitor) was sufficient to inhibit the growth of MEC cells and induce apoptosis via affecting PUMA protein. These results suggest that MEPD has a potential anticancer property via the STAT3/PUMA signaling axis in human MEC cells of salivary gland.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis Regulatory Proteins/metabolism , Apoptosis/drug effects , Carcinoma, Mucoepidermoid/metabolism , Plant Extracts/pharmacology , Potentilla/chemistry , Proto-Oncogene Proteins/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans
16.
Oncotarget ; 8(53): 91306-91315, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-29207645

ABSTRACT

Nitidine chloride (NC) is a natural alkaloid compound derived from the plant Zanthoxylum nitidum and is known for its therapeutic anticancer potential. In this study, we investigated the effects of NC on growth and signaling pathways in human oral cancer cell lines and a tumor xenograft model. The apoptotic effects and related molecular targets of NC on human oral cancer were investigated using trypan blue exclusion assay, DAPI staining, Live/Dead assay, Western blotting, Immunohistochemistry/Immunofluorescence and a nude mouse tumor xenograft. NC decreased cell viability in both HSC3 and HSC4 cell lines; further analysis demonstrated that cell viability was reduced via apoptosis. STAT3 was hyper-phosphorylated in human oral squamous cell carcinoma (OSCC) compared with normal oral mucosa (NOM) and dephosphorylation of STAT3 by the potent STAT3 inhibitor, cryptotanshinone or NC decreased cell viability and induced apoptosis. NC also suppressed cell viability and induced apoptosis accompanied by dephosphorylating STAT3 in four other oral cancer cell lines. In a tumor xenograft model bearing HSC3 cell tumors, NC suppressed tumor growth and induced apoptosis by regulating STAT3 signaling without liver or kidney toxicity. Our findings suggest that NC is a promising chemotherapeutic candidate against human oral cancer.

17.
Arch Oral Biol ; 84: 94-99, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28965045

ABSTRACT

OBJECTIVE: Caffeic acid phenethyl ester (CAPE), a natural honeybee product exhibits a spectrum of biological activities including antimicrobial, anti-inflammatory, antioxidant and antitumor actions. The purpose of this research was to investigate the anticancer potential of CAPE and its molecular mechanism in human oral cancer cell lines (YD15, HSC-4 and HN22 cells). DESIGN: To determine the apoptotic activity of CAPE and identify its molecular targets, trypan blue exclusion assay, soft agar assay, Western blot analysis, DAPI staining, and live/dead assay were performed. RESULTS: CAPE significantly suppressed transformation of neoplastic cells induced by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol 13-acetate (TPA) without inhibiting growth. CAPE treatment inhibited cell growth, increased the cleavages of caspase-3 and poly (ADP-ribose) polymerase (PARP), and augmented the number of fragmented nuclei in human oral cancer cell lines. CAPE activated Bax protein causing it to undergo a conformational change, translocate to the mitochondrial outer membrane, and oligomere. CAPE also significantly increased Puma expression and interestingly Puma and Bax were co-localized. CONCLUSION: Overall, these results suggest that CAPE is a potent apoptosis-inducing agent in human oral cancer cell lines. Its action is accompanied by up-regulation of Bax and Puma proteins.


Subject(s)
Apoptosis/drug effects , Caffeic Acids/pharmacology , Mouth Neoplasms/drug therapy , Phenylethyl Alcohol/analogs & derivatives , Apoptosis Regulatory Proteins/metabolism , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Humans , Immunohistochemistry , Phenylethyl Alcohol/pharmacology , Proto-Oncogene Proteins/metabolism , Staining and Labeling , bcl-2-Associated X Protein/metabolism
18.
Cell Oncol (Dordr) ; 40(3): 235-246, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28401485

ABSTRACT

PURPOSE: Approximately 20% of all salivary gland cancer patients who are treated with current treatment modalities will ultimately develop metastases. Its most common form, mucoepidermoid carcinoma (MEC) is a highly aggressive tumor with an overall 5-year survival rate of ~30%. Until now, several chemotherapeutic drugs have been tested for the treatment of salivary gland tumors, but the results have been disappointing and the drugs often cause unwanted side effects. Therefore, several recent studies have focused on the potential of alternative and/or complementary therapeutic options, including the use of silymarin. METHODS: The effects of silymarin and its active component silibinin on salivary gland cancer-derived MC3 and HN22 cells and their underlying molecular mechanisms were examined using trypan blue exclusion, 4'-6-diamidino-2-phenylindole (DAPI) staining, Live/Dead, Annexin V/PI staining, mitochondrial membrane potential (ΔΨm) measurement, quantitative RT-PCR, soft agar colony formation and Western blotting analyses. RESULTS: We found that silymarin and silibinin dramatically increased the expression of the pro-apoptotic protein Bim in a concentration- and time-dependent manner and, concomitantly, induced apoptosis in MC3 and HN22 cells. We also found that ERK1/2 signaling inhibition successfully sensitized these cells to the apoptotic effects of silymarin and silibinin, which indicates that the ERK1/2 signaling pathway may act as an upstream regulator that modulates the silymarin/silibinin-induced Bim signaling pathway. CONCLUSIONS: Taken together, we conclude that ERK1/2 signaling pathway inhibition by silymarin and silibinin increases the expression of the pro-apoptotic Bcl-2 family member Bim which, subsequently, induces mitochondria-mediated apoptosis in salivary gland cancer-derived cells.


Subject(s)
Bcl-2-Like Protein 11/drug effects , MAP Kinase Signaling System/drug effects , Salivary Gland Neoplasms/pathology , Silymarin/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Humans , Silybin
19.
Arch Oral Biol ; 73: 1-6, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27632413

ABSTRACT

OBJECTIVE: The mimetic BH3 ABT-737, a potent inhibitor of anti-apoptotic Bcl-2 family proteins, has potential as anti-cancer drug in many cancers. Recently, patients treated with ABT-737 have developed drug tolerance during cancer therapy. Therefore, we examined whether ABT-737 is effective in killing MC-3 and HSC-3 human oral cancer cells either alone or in combination with the oncogenic kinase inhibitor, sorafenib. DESIGN: The potentiating activities of sorafenib in ABT-737-induced apoptosis were determined using trypan blue exclusion assay, DAPI staining, cell viability assay and Western blot analysis. RESULTS: Combined use of ABT-737 and sorafenib synergistically suppressed cell viability and induced apoptosis compared with either compound individually. The combination of ABT-737 and sorafenib altered only Bax and Bak proteins and their activations, resulting in mitochondrial translocation of Bax from the cytosol. Additionally, combination treatment-mediated apoptosis may be correlated with ERK and STAT3 pathways. CONCLUSIONS: These results suggest that sorafenib may effectively overcome ABT-737 resistance to apoptotic cell death, which can be a new potential chemotherapeutic strategy against human oral cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biphenyl Compounds/pharmacology , Niacinamide/analogs & derivatives , Nitrophenols/pharmacology , Phenylurea Compounds/pharmacology , Sulfonamides/pharmacology , Blotting, Western , Cell Line, Tumor , Cell Survival/drug effects , Drug Therapy, Combination , Humans , Mouth Neoplasms , Niacinamide/pharmacology , Piperazines/pharmacology , Sorafenib , Staining and Labeling
20.
Dalton Trans ; (31): 6151-8, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-20449111

ABSTRACT

Pt(II) complex of meso-tetrakis(pentafluorophenyl) N-confused porphyrin (1-Pt) efficiently binds Cl(-), Br(-), and I(-) anions at the peripheral N-H, while deprotonation proceeds with F(-), H(2)PO(4)(-), and OH(-) in CH(2)Cl(2) solution; neutral and anionic structures of 1-Pt were characterized by single crystal X-ray diffraction analysis.


Subject(s)
Organometallic Compounds/chemical synthesis , Platinum/chemistry , Porphyrins/chemistry , Pyrroles/chemistry , Anions/chemistry , Molecular Structure , Organometallic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...