Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Fitoterapia ; 173: 105831, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278423

ABSTRACT

Osteoporosis is an aging disease characterized by an imbalance between bone formation and resorption. However, drugs that inhibit bone resorption have various adverse effects. Ginseng (Panax ginseng), a prominent herbal medicine in East Asia for >2000 years, is renowned for its manifold beneficial properties, including antioxidant, anti-cancer, anti-diabetic, and anti-adipogenic activities. Despite its long history of use, the pharmacological functions of ginseng leaves are not yet fully comprehended. In this study, we evaluated the potential effects of ginseng leaf extract (GLE) on receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation in RAW264.7 macrophage cells. Tartrate-resistant acid phosphatase (TRAP) staining revealed that GLE had significant anti-osteoclastogenic activity. GLE significantly reduced mRNA levels of osteoclast differentiation markers including TRAP, nuclear factor of activated T cell cytoplasmic 1, and cathepsin K. It also suppressed the production of reactive oxygen species (ROS) and secretion of high mobility group box-1 (HMGB1) in RANKL-treated RAW264.7 cells. In addition, GLE upregulated dose- and time-dependently the expression of heme oxygenase-1 (HO-1), eventually suppressing ROS production and HMGB1 secretion. This effects of GLE were significantly reversed by Tin Protoporphyrin IX dichloride, an inhibitor of HO-1, and HO-1 shRNA, indicating that HO-1 potently inhibits RANKL-induced osteoclast differentiation by inhibiting ROS production and HMGB1 secretion. Taken together, these observations suggest that GLE could have therapeutic potential as a natural product-derived medicine for the treatment of bone disorders.


Subject(s)
Bone Resorption , HMGB1 Protein , Panax , Osteoclasts , HMGB1 Protein/metabolism , HMGB1 Protein/pharmacology , Cell Differentiation , Reactive Oxygen Species/metabolism , Heme Oxygenase-1/metabolism , Molecular Structure , Plant Extracts/pharmacology , Plant Extracts/metabolism , RANK Ligand
2.
J Ethnopharmacol ; 308: 116267, 2023 May 23.
Article in English | MEDLINE | ID: mdl-36796742

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Red clover (Trifolium pratense L.) is a traditional Chinese medicine and use as herbal medicine which has the effects of regulating menopausal symptoms, heart problem, inflammatory disease, psoriasis and cognitive deficits. In previous reported, the studies of red clover were mainly focused on clinical practice. the pharmacological functions of red clover not fully elucidated. AIM OF THE STUDY: To identify the molecules that regulate ferroptosis, we examined whether red clover (Trifolium pratense L.) extracts (RCE) affected ferroptosis induced by chemical treatment or cystine/glutamate antiporter (xCT) deficiency. MATERIALS AND METHODS: Cellular models for ferroptosis were induced by erastin/Ras-selectiv lethal 3 (RSL3) treatment or xCT deficiency in mouse embryonic fibroblasts (MEFs). Intracellular iron and peroxidized lipid levels were determined using Calcein-AM and BODIPY-C11 fluorescence dyes, respectively. Protein and mRNA were quantified by Western blot and real-time polymerase chain reaction, respectively. RNA sequencing analysis was performed on xCT-/- MEFs. RESULTS: RCE significantly suppressed ferroptosis induced by both erastin/RSL3 treatment and xCT deficiency. The anti-ferroptotic effects of RCE correlated to ferroptotic phenotypic changes such as cellular iron accumulation and lipid peroxidation in cellular ferroptosis models. Importantly, RCE affected levels of iron metabolism-related proteins including iron regulatory protein 1, ferroportin 1 (FPN1), divalent metal transporter 1, and transferrin receptor. RNA sequencing analysis of xCT-/- MEFs identified that expression of cellular defense genes was upregulated, while expression of cell death-related genes was downregulated, by RCE. CONCLUSION: RCE potently suppressed ferroptosis triggered both by erastin/RSL3 treatment and xCT deficiency by modulating cellular iron homeostasis. This is the first report that RCE has therapeutic potential in diseases associated with ferroptotic cell death, particularly ferroptosis induced by dysregulation of cellular iron metabolism.


Subject(s)
Trifolium , Animals , Mice , Trifolium/metabolism , Cell Line, Tumor , Fibroblasts/metabolism , Cell Death , Iron/metabolism , Homeostasis
3.
Mol Cell Endocrinol ; 562: 111838, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36565788

ABSTRACT

Zinc finger protein (ZFP) 251 is a member of the C2H2 ZFP family containing a Krüppel-associated box domain that might mainly act as a transcriptional repressor. However, its cellular function remains largely unknown. Here, we discovered that ZFP251 deficiency caused glucose intolerance in mice. This phenotype was associated with impaired insulin signaling due to hypertrophic changes in white adipose tissue (WAT). Gene ontology analysis revealed that ZFP251 deficiency affected the expression of genes associated with adipocyte differentiation and lipid and fatty acid metabolism. Consistent with in vivo results, hypertrophic changes were observed in Zfp251 knockdown (KD) 3T3-L1 adipocytes. In addition, Zfp251 KD 3T3-L1 preadipocytes exhibited cell cycle arrest in G0/G1 phase, leading to impaired differentiation into mature adipocytes, upon which abnormal mitotic clonal expansion and reduced expression of adipogenic markers were exhibited. These results suggest that ZFP251 deficiency causes impaired adipogenesis and adipocyte hypertrophy, leading to dysfunction of WAT.


Subject(s)
Adipocytes , Adipogenesis , Animals , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipogenesis/genetics , Cell Differentiation/genetics , Glucose/metabolism , Hypertrophy/metabolism , Zinc Fingers
4.
Antioxidants (Basel) ; 11(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35740104

ABSTRACT

Emerging evidence shows that peroxisome proliferator-activated receptor delta (PPARδ) plays a pivotal role in cellular aging. However, its function in retinal disease processes such as hyperglycemia-associated diabetic retinopathy is unclear. Here, we demonstrate that PPARδ inhibits premature senescence of retinal pigment epithelial (RPE) cells induced by high glucose (HG) through SIRT1 upregulation. A specific ligand GW501516-activation of PPARδ suppressed premature senescence and production of reactive oxygen species induced by HG in ARPE-19 cells, a spontaneously arising human RPE cell line. These effects were accompanied by the regulation of the premature senescence-associated genes p53, p21, and SMP-30. Furthermore, GW501516-activated PPARδ almost completely abolished the effects of HG treatment on the formation of phosphorylated H2A histone family member X (γ-H2A.X) foci, a molecular marker of aging. These inhibitory effects of GW501516 were significantly reversed in ARPE-19 cells stably expressing small hairpin RNA targeting PPARδ. Notably, GW501516 significantly increased the mRNA and protein levels of SIRT1, indicating that GW501516-activated PPARδ exerted its beneficial effects through SIRT1. In addition, GW501516 restored HG-suppressed SIRT1 expression, corroborating the role of SIRT1 in the anti-senescence function of PPARδ. The effects of PPARδ on HG-induced premature senescence and the expression of the senescence-associated genes p53, p21, and SMP-30 were mimicked by the SIRT1 activator resveratrol, but blocked by the SIRT1 inhibitor sirtinol. Collectively, these results indicate that GW501516-activated PPARδ inhibits HG-triggered premature senescence of RPE cells by modulating SIRT1 signaling.

5.
Antioxidants (Basel) ; 11(5)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35624674

ABSTRACT

Intracellular iron accumulation in dopaminergic neurons contributes to neuronal cell death in progressive neurodegenerative disorders such as Parkinson's disease. However, the mechanisms of iron homeostasis in this context remain incompletely understood. In the present study, we assessed the role of the nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ) in cellular iron homeostasis. We identified that PPARδ inhibited 6-hydroxydopamine (6-OHDA)-triggered neurotoxicity in SH-SY5Y neuroblastoma cells. PPARδ activation with GW501516, a specific PPARδ agonist, mitigated 6-OHDA-induced neuronal damage. Further, PPARδ activation also suppressed iron accumulation, which contributes to 6-OHDA-induced neuronal damage. PPARδ activation attenuated 6-OHDA-induced neuronal damage in a similar manner to that of the iron chelator deferoxamine. We further elucidated that PPARδ modulated cellular iron homeostasis by regulating expression of divalent metal transporter 1, ferroportin 1, and ferritin, but not transferrin receptor 1, through iron regulatory protein 1 in 6-OHDA-treated cells. Interestingly, PPARδ activation suppressed 6-OHDA-triggered generation of reactive oxygen species and lipid peroxides. The effects of GW501516 were abrogated by shRNA knockdown of PPARδ, indicating that the effects of GW501516 were PPARδ-dependent. Taken together, these findings suggest that PPARδ attenuates 6-OHDA-induced neurotoxicity by preventing intracellular iron accumulation, thereby suppressing iron overload-associated generation of reactive oxygen species and lipid peroxides, key mediators of ferroptotic cell death.

6.
Biomed Pharmacother ; 143: 112223, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649350

ABSTRACT

Ferroptosis is a recently recognized process of cell death characterized by accumulation of iron-dependent lipid peroxides. Herein, we demonstrate that peroxisome proliferator-activated receptor δ (PPARδ) inhibits ferroptosis of mouse embryonic fibroblasts (MEFs) derived from cysteine/glutamate transporter (xCT)-knockout mice. Activation of PPARδ by the specific ligand GW501516 led to a dose-dependent decrease in ferroptotic cell death triggered by xCT deficiency, along with decreased levels of intracellular iron accumulation and lipid peroxidation. These effects of GW501516 were abolished by PPARδ-targeting small interfering RNA (siRNA) and the PPARδ inhibitor GSK0660, indicating that PPARδ inhibits xCT deficiency-induced ferroptosis. In addition, GW501516-activated PPARδ time- and dose-dependently upregulated catalase expression at both the mRNA and protein levels. This PPARδ-mediated upregulation of catalase was markedly attenuated in cells treated with PPARδ-targeting siRNA and GSK0660, indicating that expression of catalase is dependent on PPARδ. Consistently, the effects of GW501516 on ferroptosis of xCT-deficient MEFs were counteracted in the presence of 3-amino-1,2,4-triazole, a specific inhibitor of catalase, suggesting that catalase is essential for the effect of PPARδ on ferroptosis triggered by xCT deficiency. GW501516-activated PPARδ stabilized peroxisomes through catalase upregulation by targeting peroxisomal hydrogen peroxide-mediated lysosomal rupture, which led to ferroptosis of xCT-deficient MEFs. Collectively, these results demonstrate that PPARδ modulates ferroptotic signals in xCT-deficient MEFs by regulating catalase expression.


Subject(s)
Amino Acid Transport System y+/deficiency , Ferroptosis , Fibroblasts/metabolism , PPAR gamma/metabolism , Peroxisomes/metabolism , Amino Acid Transport System y+/genetics , Animals , Catalase/biosynthesis , Catalase/genetics , Cells, Cultured , Enzyme Induction , Ferroptosis/drug effects , Fibroblasts/drug effects , Fibroblasts/pathology , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Mice, Knockout , Oxidative Stress , PPAR gamma/agonists , PPAR gamma/genetics , Peroxisomes/drug effects , Peroxisomes/genetics , Peroxisomes/pathology , Signal Transduction , Thiazoles/pharmacology
7.
Antioxidants (Basel) ; 10(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34439471

ABSTRACT

Hypertrophy of myocytes has been implicated in cardiac dysfunctions affecting wall stress and patterns of gene expression. However, molecular targets potentially preventing cardiac hypertrophy have not been fully elucidated. In the present study, we demonstrate that upregulation of catalase by peroxisome proliferator-activated receptor δ (PPARδ) is involved in the anti-hypertrophic activity of PPARδ in angiotensin II (Ang II)-treated H9c2 cardiomyocytes. Activation of PPARδ by a specific ligand GW501516 significantly inhibited Ang II-induced hypertrophy and the generation of reactive oxygen species (ROS) in H9c2 cardiomyocytes. These effects of GW501516 were almost completely abolished in cells stably expressing small hairpin (sh)RNA targeting PPARδ, indicating that PPARδ mediates these effects. Significant concentration and time-dependent increases in catalase at both mRNA and protein levels were observed in GW501516-treated H9c2 cardiomyocytes. In addition, GW501516-activated PPARδ significantly enhanced catalase promoter activity and protein expression, even in the presence of Ang II. GW501516-activated PPARδ also inhibited the expression of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), which are both marker proteins for hypertrophy. The effects of GW501516 on the expression of ANP and BNP were reversed by 3-amino-1,2,4-triazole (3-AT), a catalase inhibitor. Inhibition or downregulation of catalase by 3-AT or small interfering (si)RNA, respectively, abrogated the effects of PPARδ on Ang II-induced hypertrophy and ROS generation, indicating that these effects of PPARδ are mediated through catalase induction. Furthermore, GW501516-activated PPARδ exerted catalase-dependent inhibitory effects on Ang II-induced hypertrophy by blocking p38 mitogen-activated protein kinase. Taken together, these results indicate that the anti-hypertrophic activity of PPARδ may be achieved, at least in part, by sequestering ROS through fine-tuning the expression of catalase in cardiomyocytes.

8.
J Dermatol Sci ; 103(3): 167-175, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34420848

ABSTRACT

BACKGROUND: Previous studies suggested that the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-δ plays an essential role in cellular responses against oxidative stress. OBJECTIVE: To investigate how PPAR-δ elicits cellular responses against oxidative stress in primary human dermal fibroblasts (HDFs) exposed to ultraviolet B (UVB). METHODS: The present study was undertaken in HDFs by performing real-time polymerase chain reaction, gene silencing, cytotoxicity and reporter gene assay, analyses for catalase and reactive oxygen species, and immunoblot analyses. RESULTS: The PPAR-δ activator GW501516 upregulated expression of catalase and this upregulation was attenuated by PPAR-δ-targeting siRNA. GW501516-activated PPAR-δ induced catalase promoter activity through a direct repeat 1 response element. Mutation of this response element completely abrogated transcriptional activation, indicating that this site is a novel type of PPAR-δ response element. In addition, GW501516-activated PPAR-δ counteracted the reductions in activity and expression of catalase induced by UVB irradiation. These recovery effects were significantly attenuated in the presence of PPAR-δ-targeting siRNA or the specific PPAR-δ antagonist GSK0660. GW501516-activated PPAR-δ also protected HDFs from cellular damage triggered by UVB irradiation, and this PPAR-δ-mediated reduction of cellular damage was reversed by the catalase inhibitor or catalase-targeting siRNA. These effects of catalase blockade were positively correlated with accumulation of reactive oxygen species in HDFs exposed to UVB. Furthermore, GW501516-activated PPAR-δ targeted peroxisomal hydrogen peroxide through catalase in UVB-irradiated HDFs. CONCLUSION: The gene encoding catalase is a target of PPAR-δ, and this novel catalase-mediated pathway plays a critical role in the cellular response elicited by PPAR-δ against oxidative stress.


Subject(s)
Catalase/genetics , Dermis/radiation effects , Fibroblasts/radiation effects , PPAR delta/metabolism , Ultraviolet Rays/adverse effects , Dermis/cytology , Dermis/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Hydrogen Peroxide/metabolism , Oxidative Stress/drug effects , Oxidative Stress/genetics , Oxidative Stress/radiation effects , PPAR delta/agonists , PPAR delta/genetics , Peroxisomes/drug effects , Peroxisomes/metabolism , Peroxisomes/radiation effects , Primary Cell Culture , Thiazoles , Up-Regulation/drug effects
9.
J Food Biochem ; 45(7): e13805, 2021 07.
Article in English | MEDLINE | ID: mdl-34096077

ABSTRACT

High mobility group box 1 (HMGB1) is a well-defined mediator involved in the pathophysiologic response to endotoxemia and sepsis. However, the mechanisms and therapeutic agents that could prevent its release are not fully elucidated. Here, the present study demonstrates that the ginseng leaf extract (GLE) regulates lipopolysaccharide (LPS)-triggered release of HMGB1 in macrophages and endotoxemic animal model. Treatment of RAW264.7 macrophages with GLE significantly inhibited the release of HMGB1 stimulated by LPS. GLE also suppressed the generation of nitric oxide (NO) and expression of inducible NO synthase (iNOS) in a dose-dependent manner. These effects of GLE were accompanied by inhibition of HMGB1 release stimulated by LPS, indicating a potential mechanism by which GLE regulates HMGB1 release through NO signaling. Furthermore, induction of suppressor of cytokine signaling 1 by GLE-mediated GLE-dependent suppression of HMGB1 release and NO/iNOS induction by inhibiting Janus kinase 2/signal transducer and activator of transcription 1 signal in RAW 264.7 cells exposed to LPS. Finally, administration of the GLE ameliorated the survival rate of LPS-injected endotoxemic mice in a NO-dependent manner. Thus, GLE may block the LPS-stimulated release of HMGB1 by regulating cellular signal networks, thereby providing a therapeutic strategy for endotoxemia as a functional food. PRACTICAL APPLICATIONS: High mobility group box 1 (HMGB1) is released into the extracellular milieu when immune cells are exposed to pathogen-related molecules such as lipopolysaccharide (LPS), in which it acts as a critical mediator of lethality in sepsis and endotoxemia. The extract of ginseng leaf, which is a part that can be easily thrown away, ameliorated the survival rate of endotoxemic mice by inhibiting HMGB1 secretion in a NO-dependent manner. Thus, this study suggests that ginseng leaf can be used as a functional food by resolving the immune responses in the pathology of endotoxemia.


Subject(s)
Endotoxemia , HMGB1 Protein , Panax , Animals , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Mice , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , RAW 264.7 Cells
10.
Molecules ; 25(12)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570881

ABSTRACT

This study shows that taurine and ginsenoside Rf act synergistically to increase the expression of brain-derived neurotrophic factor (BDNF) in SH-SY5Y human neuroblastoma cells in a dose- and time-dependent manner. The increase of BDNF mRNA by taurine and ginsenoside Rf was markedly attenuated by inhibitors of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase. In addition, taurine and ginsenoside Rf protected cells from corticosterone-induced BDNF suppression and reduced cell viability and lactate dehydrogenase release. The results from this study showed that combined treatment with both taurine and ginsenoside Rf enhanced BDNF expression and protected cells against corticosterone-induced damage.


Subject(s)
Brain-Derived Neurotrophic Factor/biosynthesis , Corticosterone/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Ginsenosides/pharmacology , Neoplasm Proteins/biosynthesis , Neuroblastoma/metabolism , Taurine/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Neuroblastoma/drug therapy , Neuroblastoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...