Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Microbiome ; 9(1): 143, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34154659

ABSTRACT

BACKGROUND: Gut microbiomes, such as the rumen, greatly influence host nutrition due to their feed energy-harvesting capacity. We investigated temporal ecological interactions facilitating energy harvesting at the fresh perennial ryegrass (PRG)-biofilm interface in the rumen using an in sacco approach and prokaryotic metatranscriptomic profiling. RESULTS: Network analysis identified two distinct sub-microbiomes primarily representing primary (≤ 4 h) and secondary (≥ 4 h) colonisation phases and the most transcriptionally active bacterial families (i.e Fibrobacteriaceae, Selemondaceae and Methanobacteriaceae) did not interact with either sub-microbiome, indicating non-cooperative behaviour. Conversely, Prevotellaceae had most transcriptional activity within the primary sub-microbiome (focussed on protein metabolism) and Lachnospiraceae within the secondary sub-microbiome (focussed on carbohydrate degradation). Putative keystone taxa, with low transcriptional activity, were identified within both sub-microbiomes, highlighting the important synergistic role of minor bacterial families; however, we hypothesise that they may be 'cheating' in order to capitalise on the energy-harvesting capacity of other microbes. In terms of chemical cues underlying transition from primary to secondary colonisation phases, we suggest that AI-2-based quorum sensing plays a role, based on LuxS gene expression data, coupled with changes in PRG chemistry. CONCLUSIONS: In summary, we show that fresh PRG-attached prokaryotes are resilient and adapt quickly to changing niches. This study provides the first major insight into the complex temporal ecological interactions occurring at the plant-biofilm interface within the rumen. The study also provides valuable insights into potential plant breeding strategies for development of the utopian plant, allowing optimal sustainable production of ruminants. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Lolium , Microbiota , Animals , Gastrointestinal Microbiome/genetics , Humans , Microbiota/genetics , Plant Breeding , Rumen
3.
Microbiome ; 8(1): 23, 2020 02 21.
Article in English | MEDLINE | ID: mdl-32085816

ABSTRACT

BACKGROUND: The rumen contains a myriad of microbes whose primary role is to degrade and ferment dietary nutrients, which then provide the host with energy and nutrients. Rumen microbes commonly attach to ingested plant materials and form biofilms for effective plant degradation. Quorum sensing (QS) is a well-recognised form of bacterial communication in most biofilm communities, with homoserine lactone (AHL)-based QS commonly being used by Gram-negative bacteria alone and AI-2 Lux-based QS communication being used to communicate across Gram-negative and Gram-positive bacteria. However, bacterial cell to cell communication in the rumen is poorly understood. In this study, rumen bacterial genomes from the Hungate collection and Genbank were prospected for QS-related genes. To check that the discovered QS genes are actually expressed in the rumen, we investigated expression levels in rumen metatranscriptome datasets. RESULTS: A total of 448 rumen bacterial genomes from the Hungate collection and Genbank, comprised of 311 Gram-positive, 136 Gram-negative and 1 Gram stain variable bacterium, were analysed. Abundance and distribution of AHL and AI-2 signalling genes showed that only one species (Citrobacter sp. NLAE-zl-C269) of a Gram-negative bacteria appeared to possess an AHL synthase gene, while the Lux-based genes (AI-2 QS) were identified in both Gram-positive and Gram-positive bacteria (191 genomes representing 38.2% of total genomes). Of these 192 genomes, 139 are from Gram-positive bactreetteria and 53 from Gram-negative bacteria. We also found that the genera Butyrivibrio, Prevotella, Ruminococcus and Pseudobutyrivibrio, which are well known as the most abundant bacterial genera in the rumen, possessed the most lux-based AI-2 QS genes. Gene expression levels within the metatranscriptome dataset showed that Prevotella, in particular, expressed high levels of LuxS synthase suggesting that this genus plays an important role in QS within the rumen. CONCLUSION: This is the most comprehensive study of QS in the rumen microbiome to date. This study shows that AI-2-based QS is rife in the rumen. These results allow a greater understanding on plant-microbe interactions in the rumen.


Subject(s)
Bacterial Proteins/metabolism , Genome, Bacterial , Gram-Negative Bacteria/genetics , Gram-Positive Bacteria/genetics , Quorum Sensing , Rumen/microbiology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Animals , Bacterial Proteins/genetics , Biofilms , Carbon-Sulfur Lyases/genetics , Gene Expression Profiling , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...