Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(22): 26601-26609, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34033467

ABSTRACT

We propose an embedded reverse-offset printing (EROP) method, which generates silver nanowire (AgNW) transparent electrodes for display applications. The proposed EROP method can solve the two critical issues of microscale pattern formation and surface planarization. The AgNW electrode had a transmittance of 82% at 550 nm, a sheet resistance of 12.2 Ω/sq, and a 3.27 nm smooth surface. We realized the roll-based pattern formation of AgNW on a plastic substrate as small as 10 µm with negligible step differences to facilitate the proposed method. The proposed EROP method also produced a double-stacked AgNW electrode, enabling the simultaneous operation of separately micropatterned devices. To verify the usefulness of EROP, we fabricated an organic light-emitting diode (OLED) device to demonstrate leakage current reduction and efficiency improvement compared with a conventional indium tin oxide (ITO)-based OLED device. The EROP-based OLED showed 38 and 25% higher current efficiencies than an insulator-patterned AgNW OLED and a conventional ITO-based OLED, respectively.

2.
Nanotechnology ; 29(12): 125705, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29345246

ABSTRACT

We propose an alumina-deposited double-layer graphene (2LG) as a transparent, scalable, and stretchable barrier against moisture; this barrier is indispensable for foldable or stretchable organic displays and electronics. Both the barrier property and stretchability were significantly enhanced through the introduction of 2LG between alumina and a polymeric substrate. 2LG with negligible polymeric residues was coated on the polymeric substrate via a scalable dry transfer method in a roll-to-roll manner; an alumina layer was deposited on the graphene via atomic layer deposition. The effect of the graphene layer on crack generation in the alumina layer was systematically studied under external strain using an in situ micro-tensile tester, and correlations between the deformation-induced defects and water vapor transmission rate were quantitatively analyzed. The enhanced stretchability of alumina-deposited 2LG originated from the interlayer sliding between the graphene layers, which resulted in the crack density of the alumina layer being reduced under external strain.

3.
Adv Mater ; 30(5)2018 Feb.
Article in English | MEDLINE | ID: mdl-29178337

ABSTRACT

A facile methodology for the large-scale production of layer-controlled MoS2 layers on an inexpensive substrate involving a simple coating of single source precursor with subsequent roll-to-roll-based thermal decomposition is developed. The resulting 50 cm long MoS2 layers synthesized on Ni foils possess excellent long-range uniformity and optimum stoichiometry. Moreover, this methodology is promising because it enables simple control of the number of MoS2 layers by simply adjusting the concentration of (NH4 )2 MoS4 . Additionally, the capability of the MoS2 for practical applications in electronic/optoelectronic devices and catalysts for hydrogen evolution reaction is verified. The MoS2 -based field effect transistors exhibit unipolar n-channel transistor behavior with electron mobility of 0.6 cm2 V-1 s-1 and an on-off ratio of ≈10³. The MoS2 -based visible-light photodetectors are fabricated in order to evaluate their photoelectrical properties, obtaining an 100% yield for active devices with significant photocurrents and extracted photoresponsivity of ≈22 mA W-1 . Moreover, the MoS2 layers on Ni foils exhibit applicable catalytic activity with observed overpotential of ≈165 mV and a Tafel slope of 133 mV dec-1 . Based on these results, it is envisaged that the cost-effective methodology will trigger actual industrial applications, as well as novel research related to 2D semiconductor-based multifaceted applications.

4.
Nanoscale ; 8(9): 4961-8, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26540317

ABSTRACT

Oxide materials have recently attracted much research attention for applications in flexible and stretchable electronics due to their excellent electrical properties and their compatibility with established silicon semiconductor processes. Their widespread uptake has been hindered, however, by the intrinsic brittleness and low stretchability. Here we investigate the use of a graphene meta-interface to enhance the electromechanical stretchability of fragile oxide layers. Electromechanical tensile tests of indium tin oxide (ITO) layers on polymer substrates were carried out with in situ observations using an optical microscope. It was found that the graphene meta-interface reduced the strain transfer between the ITO layer and the substrate, and this behavior was well described using a shear lag model. The graphene meta-interface provides a novel pathway for realizing flexible and stretchable electronic applications based on oxide layers.

5.
Chem Commun (Camb) ; 51(13): 2671-4, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25572131

ABSTRACT

A small amount of Zn impregnated by ALD triggered enhancement of the mechanical as well as electrical properties of the graphene oxide (GO) membrane. In addition, the Zn-impregnated membranes selectively separated diverse organic vapors while maintaining high water permeability.

6.
Nanoscale ; 6(11): 6057-64, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24781278

ABSTRACT

The stretchability of CVD graphene with a large area is much lower than that of mechanically exfoliated pristine graphene owing to the intrinsic and extrinsic defects induced during its synthesis, etch-out of the catalytic metal, and the transfer processes. This low stretchability is the main obstacle for commercial application of CVD graphene in the field of flexible and stretchable electronics. In this study, artificially layered CVD graphene is suggested as a promising candidate for a stretchable transparent electrode. In contrast to single-layer graphene (SLG), multi-layer graphene has excellent electromechanical stretchability owing to the strain relaxation facilitated by sliding among the graphene layers. Macroscopic and microscopic electromechanical tensile tests were performed to understand the key mechanism for the improved stretchability, and crack generation and evolution were systematically investigated for their dependence on the number of CVD graphene layers during tensile deformation using lateral force microscopy. The stretchability of double-layer graphene (DLG) is much larger than that of SLG and is similar to that of triple-layer graphene (TLG). Considering the transmittance and the cost of transfer, DLG can be regarded as a suitable candidate for stretchable transparent electrodes.

7.
Nanotechnology ; 24(8): 085701, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23376972

ABSTRACT

Metal nanoparticle solutions are widely used for the fabrication of printed electronic devices. The mechanical properties of the solution-processed metal nanoparticle thin films are very important for the robust and reliable operation of printed electronic devices. In this paper, we report the tensile characteristics of silver nanoparticle (Ag NP) thin films on flexible polymer substrates by observing the microstructures and measuring the electrical resistance under tensile strain. The effects of the annealing temperatures and periods of Ag NP thin films on their failure strains are explained with a microstructural investigation. The maximum failure strain for Ag NP thin film was 6.6% after initial sintering at 150 °C for 30 min. Thermal annealing at higher temperatures for longer periods resulted in a reduction of the maximum failure strain, presumably due to higher porosity and larger pore size. We also found that solution-processed Ag NP thin films have lower failure strains than those of electron beam evaporated Ag thin films due to their highly porous film morphologies.

8.
Nanoscale ; 4(11): 3444-9, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22549520

ABSTRACT

Controlled alignment and mechanically robust bonding between nanowires (NWs) and electrodes are essential requirements for reliable operation of functional NW-based electronic devices. In this work, we developed a novel process for the alignment and bonding between NWs and metal electrodes by using thermo-compressive transfer printing. In this process, bottom-up synthesized NWs were aligned in parallel by shear loading onto the intermediate substrate and then finally transferred onto the target substrate with low melting temperature metal electrodes. In particular, multi-layer (e.g. Cr/Au/In/Au and Cr/Cu/In/Au) metal electrodes are softened at low temperatures (below 100 °C) and facilitate submergence of aligned NWs into the surface of electrodes at a moderate pressure (∼5 bar). By using this thermo-compressive transfer printing process, robust electrical and mechanical contact between NWs and metal electrodes can be realized. This method is believed to be very useful for the large-area fabrication of NW-based electrical devices with improved mechanical robustness, electrical contact resistance, and reliability.

SELECTION OF CITATIONS
SEARCH DETAIL
...