Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(7): e0305466, 2024.
Article in English | MEDLINE | ID: mdl-38990973

ABSTRACT

In previous animal model studies, we demonstrated the potential of rAAV2-sVEGFRv-1, which encodes a truncated variant of the alternatively spliced soluble version of VEGF receptor-1 (VEGFR1), as a human gene therapy for age-related macular degeneration (AMD) and diabetic retinopathy (DR). Here, we elucidate in vitro some of the mechanisms by which rAAV2-sVEGFRv-1 exerts its therapeutic effects. Human umbilical vein endothelial cells (HUVECs) were infected with rAAV2-sVEGFRv-1 or a control virus vector in the presence of members of the VEGF family to identify potential binding partners via ELISA, which showed that VEGF-A, VEGF-B, and placental growth factor (PlGF) are all ligands of its transgene product. In order to determine the effects of rAAV2-sVEGFRv-1 on cell proliferation and permeability, processes that are important to the progression AMD and DR, HUVECs were infected with the therapeutic virus vector under the stimulation of VEGF-A, the major driver of the neovascularization that characterizes the forms of these conditions most associated with vision loss. rAAV2-sVEGFRv-1 treatment, as a result, markedly reduced the extent to which these processes occurred, with the latter determined by measuring zonula occludens 1 expression. Finally, the human microglial HMC3 cell line was used to show the effects of the therapeutic virus vector upon inflammatory processes, another major contributor to angiogenic eye disease pathophysiology, with rAAV2-sVEGFRv-1 reducing therein the secretion of pro-inflammatory cytokines interleukin (IL)-1ß and IL-6. Combined with our previously published in vivo data, the in vitro activity of the expressed transgene here further demonstrates the great promise of rAAV2-sVEGFRv-1 as a potential human gene therapeutic for addressing angiogenic ocular conditions.


Subject(s)
Dependovirus , Genetic Therapy , Human Umbilical Vein Endothelial Cells , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-1 , Humans , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Dependovirus/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Cell Proliferation , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/metabolism , Diabetic Retinopathy/therapy , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Vascular Endothelial Growth Factor B/genetics , Vascular Endothelial Growth Factor B/metabolism , Placenta Growth Factor/genetics , Placenta Growth Factor/metabolism
2.
J Biomed Mater Res A ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38053493

ABSTRACT

Methacrylic acid (MAA)-based biomaterials promote a vascularized host response without the addition of exogenous factors such as cells or growth factors. We presume that materials containing MAA favor an alternative foreign body response, rather than the conventional fibrotic response. Here, we characterize selected aspects of the response to two different forms of MAA-a coating, which can be used to prevascularize the subcutaneous tissue for subsequent therapeutic cell delivery or an injectable hydrogel, which can be used to vascularize and deliver cells simultaneously. We show that the MAA-coating quickly vascularized the subcutaneous space compared to an uncoated silicone tube, and after 14 days of prevascularization, the tissue surrounding the MAA-coated tube presented fewer immune cells than the uncoated control. We also compared the host response to a MAA-PEG (polyethylene glycol) hydrogel at day 1, with pancreatic islets in immune-compromised SCID/bg mice and immune-competent Balb/c mice. The Balb/c mouse presented a more inflammatory response with increased IFN-γ production as compared to the SCID/bg. Together with previously published data, this work contributes to a further understanding of tissue responses to a biomaterial in different forms as used for cell delivery.

3.
Int J Mol Sci ; 24(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003443

ABSTRACT

Elevated intraocular pressure (IOP) in glaucoma causes retinal ganglion cell (RGC) loss and damage to the optic nerve. Although IOP is controlled pharmacologically, no treatment is available to restore retinal and optic nerve function. In this paper, we aimed to develop a novel gene therapy for glaucoma using an AAV2-based thioredoxin 2 (Trx2)-exoenzyme C3 transferase (C3) fusion protein expression vector (scAAV2-Trx2-C3). We evaluated the therapeutic effects of this vector in vitro and in vivo using dexamethasone (DEX)-induced glaucoma models. We found that scAAV2-Trx2-C3-treated HeLa cells had significantly reduced GTP-bound active RhoA and increased phosphor-cofilin Ser3 protein expression levels. scAAV2-Trx2-C3 was also shown to inhibit oxidative stress, fibronectin expression, and alpha-SMA expression in DEX-treated HeLa cells. NeuN immunostaining and TUNEL assay in mouse retinal tissues was performed to evaluate its neuroprotective effect upon RGCs, whereas changes in mouse IOP were monitored via rebound tonometer. The present study showed that scAAV2-Trx2-C3 can protect RGCs from degeneration and reduce IOP in a DEX-induced mouse model of glaucoma, while immunohistochemistry revealed that the expression of fibronectin and alpha-SMA was decreased after the transduction of scAAV2-Trx2-C3 in murine eye tissues. Our results suggest that AAV2-Trx2-C3 modulates the outflow resistance of the trabecular meshwork, protects retinal and other ocular tissues from oxidative damage, and may lead to the development of a gene therapeutic for glaucoma.


Subject(s)
Glaucoma , Intraocular Pressure , Humans , Mice , Animals , Retinal Ganglion Cells/metabolism , Fibronectins/metabolism , Thioredoxins/metabolism , HeLa Cells , Transferases/metabolism , Glaucoma/genetics , Glaucoma/therapy , Glaucoma/metabolism , Disease Models, Animal
4.
Biomaterials ; 301: 122265, 2023 10.
Article in English | MEDLINE | ID: mdl-37586232

ABSTRACT

Type 1 diabetes is an autoimmune disease associated with the destruction of insulin-producing ß cells. Immunotherapies are being developed to mitigate autoimmune diabetes. One promising option is the delivery of tolerogenic dendritic cells (DCs) primed with specific ß-cell-associated autoantigens. These DCs can combat autoreactive cells and promote expansion of ß-cell-specific regulatory immune cells, including Tregs. Tolerogenic DCs are typically injected systemically (or near target lymph nodes) in suspension, precluding control over the microenvironment surrounding tolerogenic DC interactions with the host. In this study we show that degradable, synthetic methacrylic acid (MAA)-based hydrogels are an inherently immunomodulating delivery vehicle that enhances tolerogenic DC therapy in the context of autoimmune diabetes. MAA hydrogels were found to affect the local recruitment and activation state of macrophages, DCs, T cells and other cells. Delivering tolerogenic DCs in the MAA hydrogel improved the local host response (e.g., fewer cytotoxic T cells) and enhanced peripheral Treg expansion. Non obese diabetic (NOD) mice treated with tolerogenic DCs subcutaneously injected in MAA hydrogels showed a delay in onset of autoimmune diabetes compared to control vehicles. Our findings further demonstrate the usefulness of MAA-based hydrogels as platforms for regenerative medicine in the context of type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Mice , Animals , Mice, Inbred NOD , Hydrogels , Dendritic Cells , Immune Tolerance , Disease Models, Animal , Immunomodulation , T-Lymphocytes, Regulatory
5.
Front Transplant ; 2: 1244093, 2023.
Article in English | MEDLINE | ID: mdl-38993844

ABSTRACT

Islet transplantation is a promising treatment for type I diabetes (T1D). Despite the high loss of islets during transplantation, current islet transplant protocols continue to rely on portal vein infusion and intrahepatic engraftment. Because of the risk of portal vein thrombosis and the loss of islets to instant blood mediated inflammatory reaction (IBMIR), other transplantation sites like the subcutaneous space have been pursued for its large transplant volume, accessibility, and amenability for retrieval. To overcome the minimal vasculature of the subcutaneous space, prevascularization approaches or vascularizing biomaterials have been used to subcutaneously deliver islets into diabetic mice to return them to normoglycemia. Previous vascularization methods have relied on a 4 to 6 week prevascularization timeframe. Here we show that a vascularizing MAA-coated silicone tube can generate sufficient vasculature in 2 to 3 weeks to support a therapeutic dose of islets in mice. In order to fully harness the potential of this prevascularized site, we characterize the unique, subcutaneous immune response to allogeneic islets in the first 7 days following transplantation, a critical stage in successful engraftment. We identify neutrophils as a specific cellular target, a previously overlooked cell in the context of subcutaneous allogeneic islet transplantation. By perioperatively depleting neutrophils, we show that neutrophils are a key, innate immune cell target for successful early engraftment of allogeneic islets in a prevascularized subcutaneous site.

6.
Cell Death Dis ; 13(6): 575, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773260

ABSTRACT

Aggregation of misfolded alpha-synuclein (α-synuclein) is a central player in the pathogenesis of neurodegenerative diseases. Therefore, the regulatory mechanism underlying α-synuclein aggregation has been intensively studied in Parkinson's disease (PD) but remains poorly understood. Here, we report p21-activated kinase 4 (PAK4) as a key regulator of α-synuclein aggregation. Immunohistochemical analysis of human PD brain tissues revealed an inverse correlation between PAK4 activity and α-synuclein aggregation. To investigate their causal relationship, we performed loss-of-function and gain-of-function studies using conditional PAK4 depletion in nigral dopaminergic neurons and the introduction of lentivirus expressing a constitutively active form of PAK4 (caPAK4; PAK4S445N/S474E), respectively. For therapeutic relevance in the latter setup, we injected lentivirus into the striatum following the development of motor impairment and analyzed the effects 6 weeks later. In the loss-of-function study, Cre-driven PAK4 depletion in dopaminergic neurons enhanced α-synuclein aggregation, intracytoplasmic Lewy body-like inclusions and Lewy-like neurites, and reduced dopamine levels in PAK4DAT-CreER mice compared to controls. Conversely, caPAK4 reduced α-synuclein aggregation, as assessed by a marked decrease in both proteinase K-resistant and Triton X100-insoluble forms of α-synuclein in the AAV-α-synuclein-induced PD model. Mechanistically, PAK4 specifically interacted with the NEDD4-1 E3 ligase, whose pharmacological inhibition and knockdown suppressed the PAK4-mediated downregulation of α-synuclein. Collectively, these results provide new insights into the pathogenesis of PD and suggest PAK4-based gene therapy as a potential disease-modifying therapy in PD.


Subject(s)
Nedd4 Ubiquitin Protein Ligases , Parkinson Disease , alpha-Synuclein , Animals , Mice , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Substantia Nigra/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
7.
Exp Neurobiol ; 31(1): 42-53, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35256543

ABSTRACT

To explore the potential function of interleukin-13 (IL-13), lipopolysaccharide (LPS) or PBS as a control was unilaterally microinjected into striatum of rat brain. Seven days after LPS injection, there was a significant loss of neurons and microglial activation in the striatum, visualized by immunohistochemical staining against neuronal nuclei (NeuN) and the OX-42 (complement receptor type 3, CR3), respectively. In parallel, IL-13 immunoreactivity was increased as early as 3 days and sustained up to 7 days post LPS injection, compared to PBS-injected control and detected exclusively within microglia. Moreover, GFAP immunostaining and blood brain barrier (BBB) permeability evaluation showed the loss of astrocytes and disruption of BBB, respectively. By contrast, treatment with IL-13 neutralizing antibody (IL-13NA) protects NeuN+ neurons against LPS-induced neurotoxicity in vivo . Accompanying neuroprotection, IL-13NA reduced loss of GFAP+ astrocytes and damage of BBB in LPS-injected striatum. Intriguingly, treatment with IL-13NA produced neurotrophic factors (NTFs) on survived astrocytes in LPS-injected rat striatum. Taken together, the present study suggests that LPS induces expression of IL-13 on microglia, which contributes to neurodegeneration via damage on astrocytes and BBB disruption in the striatum in vivo.

8.
Mol Cells ; 44(7): 493-499, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34238765

ABSTRACT

Parkinson's disease (PD) is characterized by a progressive loss of dopamine-producing neurons in the midbrain, which results in decreased dopamine levels accompanied by movement symptoms. Oral administration of l-3,4-dihydroxyphenylalanine (L-dopa), the precursor of dopamine, provides initial symptomatic relief, but abnormal involuntary movements develop later. A deeper understanding of the regulatory mechanisms underlying dopamine homeostasis is thus critically needed for the development of a successful treatment. Here, we show that p21-activated kinase 4 (PAK4) controls dopamine levels. Constitutively active PAK4 (caPAK4) stimulated transcription of tyrosine hydroxylase (TH) via the cAMP response element-binding protein (CREB) transcription factor. Moreover, caPAK4 increased the catalytic activity of TH through its phosphorylation of S40, which is essential for TH activation. Consistent with this result, in human midbrain tissues, we observed a strong correlation between phosphorylated PAK4S474, which represents PAK4 activity, and phosphorylated THS40, which reflects their enzymatic activity. Our findings suggest that targeting the PAK4 signaling pathways to restore dopamine levels may provide a new therapeutic approach in PD.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Dopamine/therapeutic use , Tyrosine 3-Monooxygenase/metabolism , p21-Activated Kinases/metabolism , Animals , Dopamine/pharmacology , Humans , Phosphorylation , Rats , Transfection
9.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071457

ABSTRACT

Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), are disorders characterized by progressive degeneration of the nervous system. Currently, there is no disease-modifying treatments for most NDs. Meanwhile, numerous studies conducted on human and animal models over the past decades have showed that exercises had beneficial effects on NDs. Inter-tissue communication by myokine, a peptide produced and secreted by skeletal muscles during exercise, is thought to be an important underlying mechanism for the advantages. Here, we reviewed studies about the effects of myokines regulated by exercise on NDs and their mechanisms. Myokines could exert beneficial effects on NDs through a variety of regulatory mechanisms, including cell survival, neurogenesis, neuroinflammation, proteostasis, oxidative stress, and protein modification. Studies on exercise-induced myokines are expected to provide a novel strategy for treating NDs, for which there are no adequate treatments nowadays. To date, only a few myokines have been investigated for their effects on NDs and studies on mechanisms involved in them are in their infancy. Therefore, future studies are needed to discover more myokines and test their effects on NDs.


Subject(s)
Cytokines/metabolism , Exercise/physiology , Muscle, Skeletal/metabolism , Neurodegenerative Diseases/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Humans , Huntington Disease/metabolism , Huntington Disease/physiopathology , Neurodegenerative Diseases/physiopathology , Parkinson Disease/metabolism , Parkinson Disease/physiopathology
10.
Oxid Med Cell Longev ; 2021: 8887716, 2021.
Article in English | MEDLINE | ID: mdl-33777322

ABSTRACT

Terpenes are vital metabolites found in various plants and animals and known to be beneficial in the treatment of various diseases. Previously, our group identified terpenes that increased the survival of Alzheimer's disease (AD) model flies expressing human amyloid ß (Aß) and identified linalool as a neuroprotective terpene against Aß toxicity. Linalool is a monoterpene that is commonly present as a constituent in essential oils from aromatic plants and is known to have anti-inflammatory, anticancer, antihyperlipidemia, antibacterial, and neuroprotective properties. Although several studies have shown the beneficial effect of linalool in AD animal models, the mechanisms underlying the beneficial effect of linalool on AD are yet to be elucidated. In the present study, we showed that linalool intake increased the survival of the AD model flies during development in a dose-dependent manner, while the survival of wild-type flies was not affected even at high linalool concentrations. Linalool also decreases Aß-induced apoptosis in eye discs as well as the larval brain. Moreover, linalool intake was found to reduce neurodegeneration in the brain of adult AD model flies. However, linalool did not affect the total amount of Aß42 protein or Aß42 aggregation. Rather, linalool decreased Aß-induced ROS levels, oxidative stress, and inflammatory response in the brains of AD model flies. Furthermore, linalool attenuated the induction of oxidative stress and gliosis by Aß 1-42 treatment in the rat hippocampus. Taken together, our data suggest that linalool exerts its beneficial effects on AD by reducing Aß42-induced oxidative stress and inflammatory reactions.


Subject(s)
Acyclic Monoterpenes/pharmacology , Alzheimer Disease , Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , Reactive Oxygen Species/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , Disease Models, Animal , Drosophila melanogaster , Peptide Fragments/genetics , Rats , Rats, Sprague-Dawley
11.
Nutrients ; 12(6)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560305

ABSTRACT

Vitamins are the essential elements for human life and, particularly, for infant health. Human milk is the best source of nutrients for newborns, however, the information of vitamins in Asian maternal milk is still limited. In this study, we have collected 580 Asian maternal milk samples from Korea (n = 254), China (n = 137), Pakistan (n = 92), and Vietnam (n = 97). The vitamin concentrations, including vitamin B-groups (8 vitamins), fat-soluble vitamin (retinol, D, E, K) and lutein in the breast milk of were investigated. The concentration of thiamin (B1), biotin (B7), and folic acid (B9) in mother's milk of four countries were not considerably different, while riboflavin (B2), pantothenic acid (B5), and pyridoxine (B6) level in Vietnam samples were significantly lower than those in other countries. In contrast, retinol (A) and tocopherol (E) were found to be higher levels in Vietnamese maternal milk. Korean and Chinese maternal milk had low concentrations of retinol that may cause vitamin A deficiency in children. However, Chinese mother's milk was distinguished with a high concentration of lutein. Pakistani mother's milk was observed as having a significant problem of folic acid (B9) deficiency. Regardless of the country, vitamin B12, K, and D did not seem to be provided sufficiently through maternal milk. The moderate positive correlations were found between vitamin concentrations in each country and the pooled sample. The data obtained in this study were able to provide vital information to assess the nutritional status of breast milk in Asian countries and contributed to the efforts of ensuring the best nutrition for Asian children.


Subject(s)
Lutein/analysis , Milk, Human/chemistry , Vitamins/analysis , Asia , China , Female , Folic Acid/analysis , Humans , Pakistan , Pantothenic Acid/analysis , Republic of Korea , Riboflavin/analysis , Vietnam , Vitamin A/analysis , Vitamin B 12/analysis , Vitamin B Complex/analysis , Vitamin E/analysis
12.
Sci Adv ; 6(19): eaay3909, 2020 05.
Article in English | MEDLINE | ID: mdl-32494696

ABSTRACT

Bioinformatic and functional data link integrin-mediated cell adhesion to cellular senescence; however, the significance of and molecular mechanisms behind these connections are unknown. We now report that the focal adhesion-localized ßPAK-interacting exchange factor (ßPIX)-G protein-coupled receptor kinase interacting protein (GIT) complex controls cellular senescence in vitro and in vivo. ßPIX and GIT levels decline with age. ßPIX knockdown induces cellular senescence, which was prevented by reexpression. Loss of ßPIX induced calpain cleavage of the endocytic adapter amphiphysin 1 to suppress clathrin-mediated endocytosis (CME); direct competition of GIT1/2 for the calpain-binding site on paxillin mediates this effect. Decreased CME and thus integrin endocytosis induced abnormal integrin signaling, with elevated reactive oxygen species production. Blocking integrin signaling inhibited senescence in human fibroblasts and mouse lungs in vivo. These results reveal a central role for integrin signaling in cellular senescence, potentially identifying a new therapeutic direction.


Subject(s)
Calpain , Integrins , Animals , Cellular Senescence , Focal Adhesions/metabolism , Integrins/metabolism , Mice , Rho Guanine Nucleotide Exchange Factors/metabolism
13.
Int J Mol Sci ; 21(3)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32019113

ABSTRACT

Alzheimer's disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to abnormal accumulation of the amyloid ß (Aß) protein. Despite decades of intensive research, the mechanisms underlying AD remain elusive, and the only available treatment remains symptomatic. Molecular understanding of the pathogenesis and progression of AD is necessary to develop disease-modifying treatment. Drosophila, as the most advanced genetic model, has been used to explore the molecular mechanisms of AD in the last few decades. Here, we introduce Drosophila AD models based on human Aß and summarize the results of their genetic dissection. We also discuss the utility of functional genomics using the Drosophila system in the search for AD-associated molecular mechanisms in the post-genomic era.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Neurodegenerative Diseases/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Drosophila , Genomics , Humans , Neurodegenerative Diseases/metabolism
14.
Biomaterials ; 232: 119710, 2020 02.
Article in English | MEDLINE | ID: mdl-31901691

ABSTRACT

Pancreatic islets are fragile cell clusters and many isolated islets are not suitable for transplantation. Furthermore, following transplantation, islets will experience a state of hypoxia and poor nutrient diffusion before revascularization, which is detrimental to islet survival; this is affected by islet size and health. Here we engineered tuneable size-controlled pseudo-islets created by dispersing de-aggregated islets in an endothelialized collagen scaffold. This supported subcutaneous engraftment, which returned streptozotocin-induced diabetic mice to normoglycemia. Whole-implant imaging after tissue clearing demonstrated pseudo-islets regenerated their vascular architecture and insulin-secreting ß-cells were within 5 µm of a perfusable vessel - a feature unique to this approach. By using an endothelialized collagen scaffold, this work highlights a novel "bottom-up" approach to islet engineering that provides control over the size and composition of the constructs, while enabling the critical ability to revascularize and engraft when transplanted into the clinically useful subcutaneous space.


Subject(s)
Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Blood Glucose , Collagen , Diabetes Mellitus, Experimental/therapy , Mice
15.
J Microbiol Biotechnol ; 30(2): 259-270, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-31838794

ABSTRACT

Listeria monocytogenes is a gram-positive, facultative anaerobe food pathogen responsible for the listeriosis that mostly occurs during the low-temperature storage of a cold cut or dairy products. To understand the systemic response to a wide range of growth temperatures, L. monocytogenes were cultivated at a different temperature from 10°C to 42°C, then whole cell proteomic analysis has been performed both exponential and stationary cells. The specific growth rate increased proportionally with the increase in growth temperature. The maximum growth rate was observed at 37°C and was maintained at 42°C. Global protein expression profiles mainly depended on the growth temperatures showing similar clusters between exponential and stationary phases. Expressed proteins were categorized by their belonging metabolic systems and then, evaluated the change of expression level in regard to the growth temperature and stages. DnaK, GroEL, GroES, GrpE, and CspB, which were the heat&cold shock response proteins, increased their expression with increasing the growth temperatures. In particular, GroES and CspB were expressed more than 100-fold than at low temperatures during the exponential phase. Meanwhile, CspL, another cold shock protein, overexpressed at a low temperature then exponentially decreased its expression to 65-folds. Chemotaxis protein CheV and flagella proteins were highly expressed at low temperatures and stationary phases. Housekeeping proteins maintained their expression levels constant regardless of growth temperature or growth phases. Most of the growth related proteins, which include central carbon catabolic enzymes, were highly expressed at 30°C then decreased sharply at high growth temperatures.


Subject(s)
Bacterial Proteins , Computational Biology , Listeria monocytogenes/metabolism , Proteome , Proteomics , Computational Biology/methods , Energy Metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Listeria monocytogenes/genetics , Listeria monocytogenes/growth & development , Molecular Sequence Annotation , Oxidation-Reduction , Proteomics/methods , Temperature
16.
J Clin Med ; 8(8)2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31426376

ABSTRACT

Variants in the APOE gene region may explain ethnic differences in the association of Alzheimer's disease (AD) with ε4. Ethnic differences in allele frequencies for three APOE region SNPs (single nucleotide polymorphisms) were identified and tested for association in 19,398 East Asians (EastA), including Koreans and Japanese, 15,836 European ancestry (EuroA) individuals, and 4985 African Americans, and with brain imaging measures of cortical atrophy in sub-samples of Koreans and EuroAs. Among ε4/ε4 individuals, AD risk increased substantially in a dose-dependent manner with the number of APOE promoter SNP rs405509 T alleles in EastAs (TT: OR (odds ratio) = 27.02, p = 8.80 × 10-94; GT: OR = 15.87, p = 2.62 × 10-9) and EuroAs (TT: OR = 18.13, p = 2.69 × 10-108; GT: OR = 12.63, p = 3.44 × 10-64), and rs405509-T homozygotes had a younger onset and more severe cortical atrophy than those with G-allele. Functional experiments using APOE promoter fragments demonstrated that TT lowered APOE expression in human brain and serum. The modifying effect of rs405509 genotype explained much of the ethnic variability in the AD/ε4 association, and increasing APOE expression might lower AD risk among ε4 homozygotes.

17.
Exp Mol Med ; 51(2): 1-9, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30755582

ABSTRACT

p21-Activated kinase 4 (PAK4), a member of the PAK family, regulates a wide range of cellular functions, including cell adhesion, migration, proliferation, and survival. Dysregulation of its expression and activity thus contributes to the development of diverse pathological conditions. PAK4 plays a pivotal role in cancer progression by accelerating the epithelial-mesenchymal transition, invasion, and metastasis. Therefore, PAK4 is regarded as an attractive therapeutic target in diverse types of cancers, prompting the development of PAK4-specific inhibitors as anticancer drugs; however, these drugs have not yet been successful. PAK4 is essential for embryonic brain development and has a neuroprotective function. A long list of PAK4 effectors has been reported. Recently, the transcription factor CREB has emerged as a novel effector of PAK4. This finding has broad implications for the role of PAK4 in health and disease because CREB-mediated transcriptional reprogramming involves a wide range of genes. In this article, we review the PAK4 signaling pathways involved in prostate cancer, Parkinson's disease, and melanogenesis, focusing in particular on the PAK4-CREB axis.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Disease Susceptibility , Signal Transduction , p21-Activated Kinases/metabolism , Animals , Humans , Melanins/biosynthesis , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology , Parkinson Disease/etiology , Parkinson Disease/metabolism , Protein Binding , Protein Interaction Domains and Motifs , p21-Activated Kinases/chemistry
18.
Int J Mol Sci ; 19(11)2018 Nov 10.
Article in English | MEDLINE | ID: mdl-30423807

ABSTRACT

We demonstrated that capsaicin (CAP), an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), inhibits microglia activation and microglia-derived oxidative stress in the substantia nigra (SN) of MPP⁺-lesioned rat. However, the detailed mechanisms how microglia-derived oxidative stress is regulated by CAP remain to be determined. Here we report that ciliary neurotrophic factor (CNTF) endogenously produced by CAP-activated astrocytes through TRPV1, but not microglia, inhibits microglial activation and microglia-derived oxidative stress, as assessed by OX-6 and OX-42 immunostaining and hydroethidine staining, respectively, resulting in neuroprotection. The significant increase in levels of CNTF receptor alpha (CNTFRα) expression was evident on microglia in the MPP⁺-lesioned rat SN and the observed beneficial effects of CNTF was abolished by treatment with CNTF receptor neutralizing antibody. It is therefore likely that CNTF can exert its effect via CNTFRα on microglia, which rescues dopamine neurons in the SN of MPP⁺-lesioned rats and ameliorates amphetamine-induced rotations. Immunohistochemical analysis revealed also a significantly increased expression of CNTFRα on microglia in the SN from human Parkinson's disease patients compared with age-matched controls, indicating that these findings may have relevance to the disease. These data suggest that CNTF originated from TRPV1 activated astrocytes may be beneficial to treat neurodegenerative disease associated with neuro-inflammation such as Parkinson's disease.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Ciliary Neurotrophic Factor/pharmacology , Dopaminergic Neurons/pathology , Microglia/pathology , Neuroprotection/drug effects , Neurotoxicity Syndromes/pathology , Oxidative Stress , Aged , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Capsaicin/pharmacology , Cell Survival/drug effects , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Female , Gene Knockdown Techniques , Humans , Male , Microglia/drug effects , Microglia/metabolism , Models, Biological , Nerve Degeneration/pathology , Oxidative Stress/drug effects , RNA, Small Interfering/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Receptor, Ciliary Neurotrophic Factor/metabolism , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/pathology , TRPV Cation Channels/metabolism
19.
Vaccine ; 36(52): 8028-8038, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30448064

ABSTRACT

Cell-mediated immunity is an important component of immediate and long-term anti-viral protection. Dendritic cells (DCs) are essential for the induction of cell-mediated immunity by instructing the activation and differentiation of antigen-specific T cell responses. Activated DCs that express co-stimulatory molecules and pro-inflammatory cytokines are necessary to promote the development of type 1 immune responses required for viral control. Here we report that plant-derived virus-like particles (VLPs) bearing influenza hemagglutinins (HA) directly stimulate mouse and human DCs. DCs exposed to H1- and, to a lesser extent, H5-VLPs in vitro rapidly express co-stimulatory molecules and produce pro-inflammatory cytokines including IL-12, IL-6 and TNFα. Furthermore, these VLPs support the activation and differentiation of antigen-specific T cell responses. Mechanistically, H1-VLPs stimulate the activation of kinases typically activated downstream of pattern recognition receptors including AKT, p38, and p42/44 ERK. In vivo, immunization with plant-derived VLPs induce the accumulation of both cDC1s and cDC2 in the draining lymph node and a corresponding increase in T and B cells. VLPs devoid of HA protein activate DCs, suggesting they are intrinsically immunostimulatory. Together, the results demonstrate that these candidate plant-derived VLP vaccines have an inherent and direct stimulatory effect on DCs and can enhance the ability of DCs to promote Type 1 immune responses.


Subject(s)
Dendritic Cells/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunity, Cellular , Influenza Vaccines/immunology , Vaccines, Virus-Like Particle/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Influenza, Human/prevention & control , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Plants/genetics , Plants/immunology , Th1 Cells/immunology , Vaccines, Virus-Like Particle/administration & dosage
20.
Exp Neurobiol ; 27(3): 226-237, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30022874

ABSTRACT

An abnormal reorganization of the dentate gyrus and neurotoxic events are important phenotypes in the hippocampus of patients with temporal lobe epilepsy (TLE). The effects of morin, a bioflavonoid constituent of many herbs and fruits, on epileptic seizures have not yet been elucidated, though its beneficial effects, such as its anti-inflammatory and neuroprotective properties, are well-described in various neurodegenerative diseases. In the present study, we investigated whether treatment with morin hydrate (MH) can reduce the susceptibility to seizures, granule cell dispersion (GCD), mammalian target of rapamycin complex 1 (mTORC1) activity, and the increases in the levels of apoptotic molecules and inflammatory cytokines in the kainic acid (KA)-induced seizure mouse model. Our results showed that oral administration of MH could reduce susceptibility to seizures and lead to the inhibition of GCD and mTORC1 activity in the KA-treated hippocampus. Moreover, treatment with MH significantly reduced the increased levels of apoptotic signaling molecules and pro-inflammatory mediators in the KA-treated hippocampus compared with control mice, suggesting a neuroprotective role. Therefore, these results suggest that morin has a therapeutic potential against epilepsy through its abilities to inhibit GCD and neurotoxic events in the in vivo hippocampus.

SELECTION OF CITATIONS
SEARCH DETAIL
...