Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotoxicology ; 22(1): 39-48, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11307850

ABSTRACT

Chlorpyrifos (CPF) is an organophosphorus insecticide that elicits toxicity through inhibition of acetylcholinesterase (AChE). Young animals are markedly more sensitive than adults to the acute toxicity of CPF. We evaluated acetylcholine (ACh) release and its muscarinic receptor-mediated regulation (i.e. muscarinic autoreceptor function, MAF) during maturation as a possible contributing factor to age-related differences in sensitivity. Cortical and striatal slices were prelabeled with [3H]choline chloride, superfused in the presence or absence of the anticholinesterase physostigmine (PHY, 20 microM) and stimulated twice (S1 and S2) with a high concentration of potassium chloride (20 mM). Depolarization-stimulated ACh release (DSAR) was lowest in neonatal, intermediate in juvenile and markedly higher in adult tissues. MAF was not detectable in tissues from neonatal rats but was present in juvenile and adult tissues. ACh release and MAF were studied at 4, 24 and 96 h following oral exposure to CPF (0, 0.5 or 1 x LD10). In general, 40-60% and 80-90% maximal AChE inhibition followed exposure to the respective 0.5 and 1 x LD10 dosages. DSAR was decreased in neonatal cortex 1 day after LD10 exposure but increased in juvenile striatum 1 day after LD10 treatment. In adults, DSAR was reduced at 4 and 24 h after exposure, but increased 96 h after CPF exposure. In juveniles, MAF was reduced in both brain regions at 24 h after 0.5LD10 exposure and at 24 and 96 h after LD10 exposure in cortex. A later reduction in MAF was noted in adult tissues (i.e. only at 96 h after LD10 treatment). Together, the results suggest that ACh release dynamics in brain vary markedly during postnatal maturation and that acute CPF exposure can alter ACh release in an age-related manner. The functional status of presynaptic processes regulating neurotransmitter release may contribute to age-related neurotoxicity elicited by high-dose exposures to chlorpyrifos.


Subject(s)
Acetylcholine/metabolism , Aging/metabolism , Brain Chemistry/drug effects , Chlorpyrifos/toxicity , Cholinesterase Inhibitors/toxicity , Insecticides/toxicity , Animals , Animals, Newborn , Autoreceptors/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , In Vitro Techniques , Male , Neostriatum/drug effects , Neostriatum/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Muscarinic/drug effects , Receptors, Muscarinic/metabolism
2.
Toxicol Sci ; 55(1): 124-32, 2000 May.
Article in English | MEDLINE | ID: mdl-10788567

ABSTRACT

Chlorpyrifos (CPF) is a common organophosphorus (OP) pesticide. Previous studies have demonstrated that neonatal rats are more sensitive than adults to the acute toxicity of high dosages of CPF. The present study examined lethality and age-related differences in neurochemical indicators and functional signs of neurotoxicity following a broad range of acute and repeated oral CPF exposures. There was about a 9-fold difference in sensitivity to the acute-dose lethality of chlorpyrifos among neonatal (7 days-of-age) and adult (90 days-of-age) rats (LD(10): neonates = 15 mg/kg; adults = 136 mg/kg), while juvenile rats (21 days-of-age) exhibited intermediate sensitivity (LD(10) = 47 mg/kg). Neonatal and adult rats (n = 5-7/treatment/age group/time point) were given CPF (0, 0.15, 0.45, 0. 75, 1.5, 4.5, 7.5, or 15 mg/kg/day) for 14 days and sacrificed 4 h after either the first or 14th dose for neurochemical measurements (cholinesterase activity in frontal cortex, plasma and RBC, and muscarinic ([(3)H]QNB) and nicotinic ([(3)H]epibatidine) receptor binding in frontal cortex. No overt signs of functional toxicity (involuntary movements, SLUD signs) were noted in either age group by 4 h after the first dose. With repeated CPF exposures, however, signs of cholinergic toxicity were noted in both age groups at the higher dose levels [no observed effect levels (NOELs): neonate = 4.5 mg/kg/day; adult = 7.5 mg/kg/day]. Similar degrees of ChE inhibition were noted in neonatal brain and blood fractions following acute exposure, but substantial ChE inhibition was only noted in adult plasma and RBC 4 h after the first treatment. Following repeated CPF exposures, similar degrees of ChE inhibition were again noted in tissues from immature animals, but a wide range of sensitivity to inhibition was noted in adult tissues. NOELs based on ChE inhibition for adults were about 1->/=10-fold higher than in neonates with acute exposure but only 0.2-2 times higher with repeated dosing. Moreover, dose-related inhibition of brain ChE was similar between age groups, and similar reductions in both QNB and epibatidine binding were noted between the age groups after repeated dosing, even though by the end of the dosing period young animals (juveniles) were still about 3 times more sensitive than adults, based on acute lethality. We conclude that while immature animals can be markedly more sensitive to lethal effects of high doses of CPF, lesser or no age-related differences are apparent, based on non-lethal endpoints, in particular with repeated exposures.


Subject(s)
Aging/physiology , Autonomic Nervous System Diseases/chemically induced , Chlorpyrifos/toxicity , Insecticides/toxicity , Parasympathetic Nervous System/drug effects , Animals , Animals, Newborn , Animals, Suckling , Autonomic Nervous System Diseases/pathology , Body Weight/drug effects , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Cholinesterases/blood , Erythrocytes/drug effects , Erythrocytes/metabolism , Male , Muscarinic Antagonists/metabolism , Nicotinic Agonists/metabolism , No-Observed-Adverse-Effect Level , Parasympathetic Nervous System/pathology , Pyridines/metabolism , Quinuclidinyl Benzilate/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Muscarinic/drug effects , Receptors, Muscarinic/metabolism , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...