Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AoB Plants ; 15(4): plad040, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37448862

ABSTRACT

Plant architecture modification (e.g. short-stature crops) is one of the key outcomes of modern crop breeding for high-yielding crop varieties. In cereals, delayed senescence, or stay-green, is an important trait that enables post-anthesis drought stress adaptation. Stay-green crops can prolong photosynthetic capacity during grain-filling period under post-anthesis drought stress, which is essential to ensure grain yield is not impacted under drought stress conditions. Although various stay-green quantitative trait loci have been identified in cereals, the underlying molecular mechanisms regulating stay-green remain elusive. Recent advances in various gene-editing technologies have provided avenues to fast-track crop improvement, such as the breeding of climate-resilient crops in the face of climate change. We present in this viewpoint the focus on using sorghum as the model cereal crop, to study PIN-FORMED (PIN) auxin efflux carriers as means to modulate plant architecture, and the potential to employ it as an adaptive strategy to address the environmental challenges posed by climate uncertainties.

2.
Front Plant Sci ; 13: 887723, 2022.
Article in English | MEDLINE | ID: mdl-35548307

ABSTRACT

In most agriculture farmlands, weed management is predominantly reliant on integrated weed management (IWM) strategies, such as herbicide application. However, the overuse and misuse of herbicides, coupled with the lack of novel active ingredients, has resulted in the uptrend of herbicide-resistant weeds globally. Moreover, weedy traits that contribute to weed seed bank persistence further exacerbate the challenges in weed management. Despite ongoing efforts in identifying and improving current weed management processes, the pressing need for novel control techniques in agricultural weed management should not be overlooked. The advent of CRISPR/Cas9 gene-editing systems, coupled with the recent advances in "omics" and cheaper sequencing technologies, has brought into focus the potential of managing weeds in farmlands through direct genetic control approaches, but could be achieved stably or transiently. These approaches encompass a range of technologies that could potentially manipulate expression of key genes in weeds to reduce its fitness and competitiveness, or, by altering the crop to improve its competitiveness or herbicide tolerance. The push for reducing or circumventing the use of chemicals in farmlands has provided an added incentive to develop practical and feasible molecular approaches for weed management, although there are significant technical, practical, and regulatory challenges for utilizing these prospective molecular technologies in weed management.

SELECTION OF CITATIONS
SEARCH DETAIL
...