Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 9(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924729

ABSTRACT

Streptococcus pneumoniae urinary antigen tests (UATs) may be interpreted using automatic readers to potentially automate sample incubation and provide standardized results reading. Here, we evaluated four UATs the BinaxNOW S. pneumoniae Antigen Card (Abbott, Chicago, IL, USA), ImmuView S. pneumoniae and Legionella (SSI Diagnostica, Hillerød, Denmark), STANDARD F S. pneumoniae Ag FIA (SD Biosensor, Gyeonggi, South Korea), and Sofia S. pneumoniae FIA (Quidel Corporation, San Diego, CA, USA) with their respective benchtop readers for their ability to detect S. pneumoniae urinary antigen. We found that these assays had a sensitivity of 76.9-86.5%, and specificity of 84.2-89.7%, with no significant difference found among the four UATs. The assays had a high level of agreement with each other, with 84.5% of samples testing consistently across all four assays. The automatically and visually read test results from the two immunochromatographic assays, BinaxNOW and ImmuView, were compared and showed excellent agreement between the two types of reading. Immunofluorescent-based assays, Sofia and STANDARD F, had significantly less time to detect compared to the two immunochromatographic assays due to having less assay setup procedures and shorter sample incubation times. In conclusion, the four UATs performed similarly in the detection of S. pneumoniae urinary antigen, and readers can bring increased flexibility to running UATs in the clinical routine.

2.
Cell Rep ; 34(4): 108673, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33503414

ABSTRACT

Indoleamine 2,3-dioxygenases (IDOs) degrade l-tryptophan to kynurenines and drive the de novo synthesis of nicotinamide adenine dinucleotide. Unsurprisingly, various invertebrates, vertebrates, and even fungi produce IDO. In mammals, IDO1 also serves as a homeostatic regulator, modulating immune response to infection via local tryptophan deprivation, active catabolite production, and non-enzymatic cell signaling. Whether fungal Idos have pleiotropic functions that impact on host-fungal physiology is unclear. Here, we show that Aspergillus fumigatus possesses three ido genes that are expressed under conditions of hypoxia or tryptophan abundance. Loss of these genes results in increased fungal pathogenicity and inflammation in a mouse model of aspergillosis, driven by an alternative tryptophan degradation pathway to indole derivatives and the host aryl hydrocarbon receptor. Fungal tryptophan metabolic pathways thus cooperate with the host xenobiotic response to shape host-microbe interactions in local tissue microenvironments.


Subject(s)
Aspergillosis/physiopathology , Aspergillus fumigatus/pathogenicity , Tryptophan/metabolism , Animals , Humans , Mice
3.
Life Sci Alliance ; 3(1)2020 01.
Article in English | MEDLINE | ID: mdl-31818882

ABSTRACT

Acquired immune responses are initiated by activation of CD4+ helper T (Th) cells via recognition of antigens presented by conventional dendritic cells (cDCs). DCs instruct Th-cell polarization program into specific effector Th subset, which will dictate the type of immune responses. Hence, it is important to unravel how differentiation and/or activation of DC are linked with Th-cell-intrinsic mechanism that directs differentiation toward a specific effector Th subset. Here, we show that loss of Runx/Cbfß transcription factors complexes during DC development leads to loss of CD103+CD11b+ cDC2s and alters characteristics of CD103-CD11b+ cDCs in the intestine, which was accompanied with impaired differentiation of Rorγt+ Th17 cells and type 3 Rorγt+ regulatory T cells. We also show that a Runx-binding enhancer in the Rorc gene is essential for T cells to integrate cDC-derived signals to induce Rorγt expression. These findings reveal that Runx/Cbfß complexes play crucial and complementary roles in cDCs and Th cells to shape converging type 3 immune responses.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/metabolism , Core Binding Factor beta Subunit/metabolism , Dendritic Cells/metabolism , Intestinal Mucosa/cytology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism , Adaptive Immunity , Animals , Cell Differentiation/immunology , Cells, Cultured , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor beta Subunit/genetics , Dendritic Cells/immunology , Intestinal Mucosa/immunology , Mice , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology
4.
Med Mycol ; 57(Supplement_2): S189-S195, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30816972

ABSTRACT

Aspergillus moulds are increasingly being recognised as significant human pathogens that can cause life-threatening infections in the context of host immune dysregulation, particularly in the lung. It is now clear that there is a close relationship between infection susceptibility and the fine regulation of pulmonary immunity and inflammation. While the contribution of IL-17/Th17 responses to both physiological and pathological lung inflammation is now well established, the cellular interactions, soluble factors, and signalling pathways that determine Th17 cell responses to fungal infection remain unclear. Here, we identify potential key mediators of fungus-DC-T cell interactions in the respiratory tract, with a focus on the DC-derived cytokines thought to exert a major influence on generation of pathological Th17 cells. We review recent data indicating a crucial role for Aspergillus-induced autophagy in lung DCs on subsequent T-cell polarization and modulation of 'stemness', which appears critical for avoiding pathological lung inflammation and promoting disease resolution.


Subject(s)
Aspergillus/immunology , Aspergillus/pathogenicity , Dendritic Cells/immunology , Host-Pathogen Interactions , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/pathology , Th17 Cells/immunology , Animals , Autophagy , Cytokines/metabolism , Disease Models, Animal , Humans
5.
Front Immunol ; 9: 210, 2018.
Article in English | MEDLINE | ID: mdl-29472933

ABSTRACT

The Parkinson's disease-associated protein, Leucine-rich repeat kinase 2 (LRRK2), a known negative regulator of nuclear factor of activated T cells (NFAT), is expressed in myeloid cells such as macrophages and dendritic cells (DCs) and is involved in the host immune response against pathogens. Since, the Ca2+/NFAT/IL-2 axis has been previously found to regulate DC response to the fungus Aspergillus, we have investigated the role played by the kinase LRRK2 during fungal infection. Mechanistically, we found that in the early stages of the non-canonical autophagic response of DCs to the germinated spores of Aspergillus, LRRK2 undergoes progressive degradation and regulates NFAT translocation from the cytoplasm to the nucleus. Our results shed new light on the complexity of the Ca2+/NFAT/IL-2 pathway, where LRRK2 plays a role in controlling the immune response of DCs to Aspergillus.


Subject(s)
Aspergillosis/immunology , Aspergillus/immunology , Autophagy/immunology , Dendritic Cells/immunology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/immunology , Signal Transduction/immunology , Animals , Aspergillosis/microbiology , Calcium/metabolism , Cations, Divalent/metabolism , Cells, Cultured , Dendritic Cells/ultrastructure , Disease Models, Animal , Gene Knockdown Techniques , Host-Parasite Interactions/immunology , Humans , Interleukin-2/metabolism , Intravital Microscopy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , NFATC Transcription Factors/metabolism , Proteolysis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Long Noncoding/metabolism , RNA, Small Interfering/metabolism , Spores, Fungal/immunology , Time-Lapse Imaging
6.
Cell Rep ; 12(11): 1789-801, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26365185

ABSTRACT

Th17 cells express diverse functional programs while retaining their Th17 identity, in some cases exhibiting a stem-cell-like phenotype. Whereas the importance of Th17 cell regulation in autoimmune and infectious diseases is firmly established, the signaling pathways controlling their plasticity are undefined. Using a mouse model of invasive pulmonary aspergillosis, we found that lung CD103(+) dendritic cells (DCs) would produce IL-2, dependent on NFAT signaling, leading to an optimally protective Th17 response. The absence of IL-2 in DCs caused unrestrained production of IL-23 and fatal hyperinflammation, which was characterized by strong Th17 polarization and the emergence of a Th17 stem-cell-like population. Although several cell types may be affected by deficient IL-2 production in DCs, our findings identify the balance between IL-2 and IL-23 productions by lung DCs as an important regulator of the local inflammatory response to infection.


Subject(s)
Antigens, CD/immunology , Aspergillosis/immunology , Dendritic Cells/immunology , Integrin alpha Chains/immunology , Lung/immunology , Th17 Cells/immunology , Animals , Aspergillosis/pathology , Aspergillus/immunology , Calcineurin/metabolism , Calcium/metabolism , Cell Differentiation , Interleukin-2/biosynthesis , Interleukin-2/immunology , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , NFATC Transcription Factors/metabolism
7.
PLoS One ; 6(4): e18720, 2011 Apr 11.
Article in English | MEDLINE | ID: mdl-21494565

ABSTRACT

BACKGROUND: Infection with Plasmodium berghei ANKA (PbA) in susceptible mice induces a syndrome called experimental cerebral malaria (ECM) with severe pathologies occurring in various mouse organs. Immune mediators such as T cells or cytokines have been implicated in the pathogenesis of ECM. Red blood cells infected with PbA parasites have been shown to accumulate in the brain and other tissues during infection. This accumulation is thought to be involved in PbA-induced pathologies, which mechanisms are poorly understood. METHODS AND FINDINGS: Using transgenic PbA parasites expressing the luciferase protein, we have assessed by real-time in vivo imaging the dynamic and temporal contribution of different immune factors in infected red blood cell (IRBC) accumulation and distribution in different organs during PbA infection. Using deficient mice or depleting antibodies, we observed that CD8(+) T cells and IFN-γ drive the rapid increase in total parasite biomass and accumulation of IRBC in the brain and in different organs 6-12 days post-infection, at a time when mice develop ECM. Other cells types like CD4(+) T cells, monocytes or neutrophils or cytokines such as IL-12 and TNF-α did not influence the early increase of total parasite biomass and IRBC accumulation in different organs. CONCLUSIONS: CD8(+) T cells and IFN-γ are the major immune mediators controlling the time-dependent accumulation of P. berghei-infected red blood cells in tissues.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Erythrocytes/parasitology , Interferon-gamma/metabolism , Malaria, Cerebral/immunology , Malaria, Cerebral/parasitology , Organ Specificity/immunology , Animals , Biomass , Brain/immunology , Brain/parasitology , Brain/pathology , DNA-Binding Proteins/metabolism , Erythrocytes/immunology , Female , Lymphocyte Depletion , Male , Mice , Mice, Inbred C57BL , Myeloid Cells/immunology , Plasmodium berghei/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...