Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Trauma Acute Care Surg ; 95(5): 664-671, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37332103

ABSTRACT

BACKGROUND: Frequent exposure to acute stress increases risk of suicide, posttraumatic stress disorder, and other stress-related disorders. Neuroendocrine and immunologic dysregulation associated with stress may underlie predispositions to psychological disorders and inflammatory disease processes in individuals, such as first-responders and other healthcare professionals, who function in high stress situations. The Hardiness Resilience Gauge (HRG) can be used to psychometrically measure resilience, a psychological modifier of the stress response. Using the HRG alongside salivary biomarker profiling, may help to identify low resilience phenotypes and allow mitigation and early therapeutic interventions. There is a paucity of knowledge regarding biomarkers of resilience. This study aims to evaluate the relationship between factors of resilience with salivary biomarker levels and fluctuations during and following acute stress. METHODS: Sixty-three first responders underwent a standardized stress-inducing training exercise, providing salivary samples before (prestress), immediately after (post-stress), and 1 hour after the event (recovery). The HRG was administered before (initial) and after (final) the event. Multiplex ELISA panels quantified 42 cytokines and 6 hormones from the samples, which were analyzed for relationships to psychometric factors of resilience measured by the HRG. RESULTS: Several biomarkers correlated with psychological resilience following the acute stress event. The HRG scores correlated ( p < 0.05) with a select set of biomarkers with moderate-to-strong correlations (|r| > 0.3). These included EGF, GROα, PDGFAA, TGFα, VEGFA, interleukin (IL)1Ra, TNFα, IL18, cortisol, FGF2, IL13, IL15, and IL6. Interestingly, fluctuations of EGF, GROα, and PDGFAA in post-stress compared with recovery were positively correlated with factors of resilience, which were negatively correlated from the pre-stress to post-stress period. CONCLUSION: This exploratory analysis discovered a small subset of salivary biomarkers that are significantly correlated with acute stress and resilience. Further investigation of their specific roles in acute stress and associations with resiliency phenotypes is warranted.


Subject(s)
Cytokines , Resilience, Psychological , Humans , Epidermal Growth Factor , Health Personnel , Biomarkers , Stress, Psychological
2.
Front Psychiatry ; 13: 957545, 2022.
Article in English | MEDLINE | ID: mdl-36339833

ABSTRACT

The acute stress response is characterized by activation of multiple interconnected systems in the body, resulting in the release of a flood of hormones and immune mediators into circulation. In addition to detection of these molecules in the serum, saliva can serve as a source of these markers as well and can be collected in a non-invasive way. The complete profile of salivary biomarkers associated with the hypothalamic pituitary adrenal/gonadal axes and the immune system during the acute stress response has not been fully elucidated. In a cohort of 62 first responders engaged in a stress training exercise, we set out to determine patterns of cytokine, chemokine and hormone shifts during the acute stress response. Salivary samples were collected immediately before (pre-stress), immediately after (post-stress) and 1 h after the stress test (recovery). Multiplex ELISA panels of 42 cytokines and 6 steroid and thyroid hormones were used to determine concentrations of these biomarkers during the three aforementioned time points. Principal components analysis was conducted to determine patterns in the large data sets collected. In our ≥0.3 loading principal components analysis, for pre-stress vs. post, post-stress vs. recovery and pre-stress vs. recovery, a total of three, four and three factors accounted for 56.6, 68.34, and 61.70% of the biomarker variation for each phase respectively. In the ≥0.7 loading principal components analysis, three, four and three factors were found for pre-stress vs. post, post-stress vs. recovery and pre-stress vs. recovery stages, respectively. Of note, in our ≥0.3 loading principal components analysis, MCP1 was present in all three factors from pre-stress to post-stress, and fractalkine was found to be in all four factors post-stress vs. recovery and pre vs. recovery from stress. Additionally, hormones testosterone, estradiol, T4 and T3 grouped together consistently in the same factor for all phases of acute stress in both ≥0.3 and ≥0.7 principal components analysis. Overall, our results identified specific patterns of immune markers and hormones that shift during acute stress and warrant further investigation to understand their mechanistic role in regulating the stress response.

SELECTION OF CITATIONS
SEARCH DETAIL
...