Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Yale J Biol Med ; 97(2): 205-224, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947104

ABSTRACT

Neuroinflammation, toxic protein aggregation, oxidative stress, and mitochondrial dysfunction are key pathways in neurodegenerative diseases like Alzheimer's disease (AD). Targeting these mechanisms with antioxidants, anti-inflammatory compounds, and inhibitors of Aß formation and aggregation is crucial for treatment. Marine algae are rich sources of bioactive compounds, including carbohydrates, phenolics, fatty acids, phycobiliproteins, carotenoids, fatty acids, and vitamins. In recent years, they have attracted interest from the pharmaceutical and nutraceutical industries due to their exceptional biological activities, which include anti-inflammation, antioxidant, anticancer, and anti-apoptosis properties. Multiple lines of evidence have unveiled the potential neuroprotective effects of these multifunctional algal compounds for application in treating and managing AD. This article will provide insight into the molecular mechanisms underlying the neuroprotective effects of bioactive compounds derived from algae based on in vitro and in vivo models of neuroinflammation and AD. We will also discuss their potential as disease-modifying and symptomatic treatment strategies for AD.


Subject(s)
Alzheimer Disease , Microalgae , Seaweed , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Microalgae/chemistry , Microalgae/metabolism , Seaweed/chemistry , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Biological Products/isolation & purification , Antioxidants/pharmacology
2.
Fitoterapia ; 176: 106025, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768797

ABSTRACT

Algae and its metabolites have been a popular subject of research in numerous fields over the years. Various reviews have been written on algal bioactive components, but a specific focus on Antarctic-derived algae is seldom reviewed. Due to the extreme climate conditions of Antarctica, it is hypothesized that the acclimatized algae may have given rise to a new set of bioactive compounds as a result of adaptation. Although most studies done on Antarctic algae are based on ecological and physiological studies, as well as in the field of nanomaterial synthesis, some studies point out the potential therapeutic properties of these compounds. As an effort to shed light on a different application of Antarctic algae, this review focuses on evaluating its different medicinal properties, including antimicrobial, anticancer, antioxidative, anti-inflammatory, and skin protective effects.


Subject(s)
Antioxidants , Antarctic Regions , Antioxidants/pharmacology , Antioxidants/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Biological Products/pharmacology , Biological Products/isolation & purification , Molecular Structure
3.
Curr Pharm Des ; 29(35): 2827-2840, 2023.
Article in English | MEDLINE | ID: mdl-37936453

ABSTRACT

Today, cardiovascular diseases are among the biggest public health threats worldwide. Atherosclerosis, a chronic inflammatory disease with complex aetiology and pathogenesis, predispose many of these conditions, including the high mortality rate-causing ischaemic heart disease and stroke. Nevertheless, despite the alarming prevalence and absolute death rate, established treatments for atherosclerosis are unsatisfactory in terms of efficacy, safety, and patient acceptance. The rapid advancement of technologies in healthcare research has paved new treatment approaches, namely cell-based and nanoparticle-based therapies, to overcome the limitations of conventional therapeutics. This paper examines the different facets of each approach, discusses their principles, strengths, and weaknesses, analyses the main targeted pathways and their contradictions, provides insights on current trends as well as highlights any unique mechanisms taken in recent years to combat the progression of atherosclerosis.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Coronary Artery Disease , Myocardial Ischemia , Humans , Atherosclerosis/drug therapy , Chronic Disease
4.
Biology (Basel) ; 12(8)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37627026

ABSTRACT

Microalgae are well known for their metal sorption capacities, but their potential in the remediation of hydrophobic organic compounds has received little attention in polar regions. We evaluated in the laboratory the ability of an Antarctic microalga to remediate diesel hydrocarbons and also investigated physiological changes consequent upon diesel exposure. Using a polyphasic taxonomic approach, the microalgal isolate, WCY_AQ5_1, originally sampled from Greenwich Island (South Shetland Islands, maritime Antarctica) was identified as Tritostichococcus sp. (OQ225631), a recently erected lineage within the redefined Stichococcus clade. Over a nine-day experimental incubation, 57.6% of diesel (~3.47 g/L) was removed via biosorption and biodegradation, demonstrating the strain's potential for phytoremediation. Fourier transform infrared spectroscopy confirmed the adsorption of oil in accordance with its hydrophobic characteristics. Overall, degradation predominated over sorption of diesel. Chromatographic analysis confirmed that the strain efficiently metabolised medium-chain length n-alkanes (C-7 to C-21), particularly n-heneicosane. Mixotrophic cultivation using diesel as the organic carbon source under a constant light regime altered the car/chl-a ratio and triggered vacuolar activities. A small number of intracellular lipid droplets were observed on the seventh day of cultivation in transmission electron microscopic imaging. This is the first confirmation of diesel remediation ability in an Antarctic green microalga.

5.
Plants (Basel) ; 12(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37447097

ABSTRACT

Research has confirmed that the utilisation of Antarctic microorganisms, such as bacteria, yeasts and fungi, in the bioremediation of diesel may provide practical alternative approaches. However, to date there has been very little attention towards Antarctic microalgae as potential hydrocarbon degraders. Therefore, this study focused on the utilisation of an Antarctic microalga in the bioremediation of diesel. The studied microalgal strain was originally obtained from a freshwater ecosystem in Paradise Bay, western Antarctic Peninsula. When analysed in systems with and without aeration, this microalgal strain achieved a higher growth rate under aeration. To maintain the growth of this microalga optimally, a conventional one-factor-at a-time (OFAT) analysis was also conducted. Based on the optimized parameters, algal growth and diesel degradation performance was highest at pH 7.5 with 0.5 mg/L NaCl concentration and 0.5 g/L of NaNO3 as a nitrogen source. This currently unidentified microalga flourished in the presence of diesel, with maximum algal cell numbers on day 7 of incubation in the presence of 1% v/v diesel. Chlorophyll a, b and carotenoid contents of the culture were greatest on day 9 of incubation. The diesel degradation achieved was 64.5% of the original concentration after 9 days. Gas chromatography analysis showed the complete mineralisation of C7-C13 hydrocarbon chains. Fourier transform infrared spectroscopy analysis confirmed that strain WCY_AQ5_3 fully degraded the hydrocarbon with bioabsorption of the products. Morphological and molecular analyses suggested that this spherical, single-celled green microalga was a member of the genus Micractinium. The data obtained confirm that this microalga is a suitable candidate for further research into the degradation of diesel in Antarctica.

6.
Plants (Basel) ; 11(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35009130

ABSTRACT

Oil pollution such as diesel poses a significant threat to the environment. Due to this, there is increasing interest in using natural materials mainly from agricultural waste as organic oil spill sorbents. Oil palm's empty fruit bunch (EFB), a cost-effective material, non-toxic, renewable resource, and abundantly available in Malaysia, contains cellulosic materials that have been proven to show a good result in pollution treatment. This study evaluated the optimum screening part of EFB that efficiently absorbs oil and the physicochemical characterisation of untreated and treated EFB fibre using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The treatment conditions were optimised using one-factor-at-a-time (OFAT), which identified optimal treatment conditions of 170 °C, 20 min, 0.1 g/cm3, and 10% diesel, resulting in 23 mL of oil absorbed. The predicted model was highly significant in statistical Response Surface Methodology (RSM) and confirmed that all the parameters (temperature, time, packing density, and diesel concentration) significantly influenced the oil absorbed. The predicted values in RSM were 175 °C, 22.5 min, 0.095 g/cm3, and 10%, which resulted in 24 mL of oil absorbed. Using the experimental values generated by RSM, 175 °C, 22.5 min, 0.095 g/cm3, and 10%, the highest oil absorption achieved was 24.33 mL. This study provides further evidence, as the data suggested that RSM provided a better approach to obtain a high efficiency of oil absorbed.

7.
Plants (Basel) ; 10(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34961148

ABSTRACT

One of the most severe environmental issues affecting the sustainable growth of human society is water pollution. Phenolic compounds are toxic, hazardous and carcinogenic to humans and animals even at low concentrations. Thus, it is compulsory to remove the compounds from polluted wastewater before being discharged into the ecosystem. Biotechnology has been coping with environmental problems using a broad spectrum of microorganisms and biocatalysts to establish innovative techniques for biodegradation. Biological treatment is preferable as it is cost-effective in removing organic pollutants, including phenol. The advantages and the enzymes involved in the metabolic degradation of phenol render the efficiency of microalgae in the degradation process. The focus of this review is to explore the trends in publication (within the year of 2000-2020) through bibliometric analysis and the mechanisms involved in algae phenol degradation. Current studies and publications on the use of algae in bioremediation have been observed to expand due to environmental problems and the versatility of microalgae. VOSviewer and SciMAT software were used in this review to further analyse the links and interaction of the selected keywords. It was noted that publication is advancing, with China, Spain and the United States dominating the studies with total publications of 36, 28 and 22, respectively. Hence, this review will provide an insight into the trends and potential use of algae in degradation.

8.
Plants (Basel) ; 10(11)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34834831

ABSTRACT

Oil spill incidents are hazardous and have prolonged damage to the marine environment. Management and spill clean-up procedures are practical and rapid, with several shortcomings. Coco peat (CP) and coco fibre (CF) are refined from coconut waste, and their abundance makes them desirable for diesel spillage treatment. Using a filter-based system, the selectivity of coco peat sorbent was tested using CP, CF and peat-fibre mix (CPM). CP exhibited maximal diesel sorption capacity with minimal seawater uptake, thus being selected for further optimisation analysis. The heat treatment considerably improved the sorption capacity and efficiency of diesel absorbed by CP, as supported by FTIR and VPSEM-EDX analysis. Conventional one-factor-at-a-time (OFAT) examined the performance of diesel sorption by CP under varying parameters, namely temperature, time of heating, packing density and diesel concentration. The significant factors were statistically evaluated using response surface methodology (RSM) via Plackett-Burman design (PB) and central composite design (CCD). Three significant (p < 0.05) factors (time, packing density and diesel concentration) were identified by PB and further analysed for interactions among the parameters. CCD predicted efficiency of diesel absorbed at 59.92% (71.90 mL) (initial diesel concentration of 30% v/v) and the experimental model validated the design with 59.17% (71.00 mL) diesel sorbed at the optimised conditions of 14.1 min of heating (200 °C) with packing density of 0.08 g/cm3 and 30% (v/v) of diesel concentration. The performance of CP in RSM (59.17%) was better than that in OFAT (58.33%). The discoveries imply that natural sorbent materials such as CP in oil spill clean-up operations can be advantageous and environmentally feasible. This study also demonstrated the diesel-filter system as a pilot study for the prospective up-scale application of oil spills.

9.
Animals (Basel) ; 11(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34573474

ABSTRACT

Antarctica is a relatively pristine continent that attracts scientists and tourists alike. However, the risk of environmental pollution in Antarctica is increasing with the increase in the number of visitors. Recently, there has been a surge in interest regarding diesel, heavy metals and microplastics pollution. Contamination from these pollutants poses risks to the environment and the health of organisms inhabiting the continent. Penguins are one of the most prominent and widely distributed animals in Antarctica and are at major risk due to pollution. Even on a small scale, the impacts of pollution toward penguin populations are extensive. This review discusses the background of penguins in Antarctica, the anthropogenic pollution and cases, as well as the impacts of diesel, heavy metals and microplastics toxicities on penguins. The trends of the literature for the emerging risks of these pollutants are also reviewed through a bibliometric approach and network mapping analysis. A sum of 27 articles are analyzed on the effects of varying pollutants on penguins in Antarctica from 2000 to 2020 using the VOSviewer bibliometric software, Microsoft Excel and Tableau Public. Research articles collected from the Scopus database are evaluated for the most applicable research themes according to the bibliometric indicators (articles, geography distribution, annual production, integrated subject areas, key source journals and keyword or term interactions). Although bibliometric studies on the present research theme are not frequent, our results are sub-optimal due to the small number of search query matches from the Scopus database. As a result, our findings offer only a fragmentary comprehension of the topics in question. Nevertheless, this review provides valuable inputs regarding prospective research avenues for researchers to pursue in the future.

10.
Nanomaterials (Basel) ; 11(2)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669327

ABSTRACT

Plastics have enormous impacts to every aspect of daily life including technology, medicine and treatments, and domestic appliances. Most of the used plastics are thrown away by consumers after a single use, which has become a huge environmental problem as they will end up in landfill, oceans and other waterways. These plastics are discarded in vast numbers each day, and the breaking down of the plastics from micro- to nano-sizes has led to worries about how toxic these plastics are to the environment and humans. While, there are several earlier studies reported the effects of micro- and nano-plastics have on the environment, there is scant research into their impact on the human body at subcellular or molecular levels. In particular, the potential of how nano-plastics move through the gut, lungs and skin epithelia in causing systemic exposure has not been examined thoroughly. This review explores thoroughly on how nanoplastics are created, how they behave/breakdown within the environment, levels of toxicity and pollution of these nanoplastics, and the possible health impacts on humans, as well as suggestions for additional research. This paper aims to inspire future studies into core elements of micro- and nano-plastics, the biological reactions caused by their specific and unusual qualities.

11.
Article in English | MEDLINE | ID: mdl-33572432

ABSTRACT

The globe is presently reliant on natural resources, fossil fuels, and crude oil to support the world's energy requirements. Human exploration for oil resources is always associated with irreversible effects. Primary sources of hydrocarbon pollution are instigated through oil exploration, extraction, and transportation in the Arctic region. To address the state of pollution, it is necessary to understand the mechanisms and processes of the bioremediation of hydrocarbons. The application of various microbial communities originated from the Arctic can provide a better interpretation on the mechanisms of specific microbes in the biodegradation process. The composition of oil and consequences of hydrocarbon pollutants to the various marine environments are also discussed in this paper. An overview of emerging trends on literature or research publications published in the last decade was compiled via bibliometric analysis in relation to the topic of interest, which is the microbial community present in the Arctic and Antarctic marine environments. This review also presents the hydrocarbon-degrading microbial community present in the Arctic, biodegradation metabolic pathways (enzymatic level), and capacity of microbial degradation from the perspective of metagenomics. The limitations are stated and recommendations are proposed for future research prospects on biodegradation of oil contaminants by microbial community at the low temperature regions of the Arctic.


Subject(s)
Metagenomics , Petroleum , Antarctic Regions , Arctic Regions , Bacteria/genetics , Bibliometrics , Biodegradation, Environmental , Humans , Hydrocarbons , Seawater
12.
PLoS One ; 10(10): e0139469, 2015.
Article in English | MEDLINE | ID: mdl-26427046

ABSTRACT

Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm), PAR plus ultraviolet-A (320-400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280-320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain, suggesting negative effects of global climate change on microalgae inhabiting (circum-) polar regions. For temperate and tropical strains of Chlorella, damage from UVR was independent of temperature but the repair constant increased with increasing temperature, implying an improved ability of these strains to recover from UVR stress under global warming.


Subject(s)
Chlorella/radiation effects , DNA Damage/radiation effects , DNA Repair/radiation effects , Photosynthesis/radiation effects , Temperature , Ultraviolet Rays , Chlorella/classification , Chlorella/growth & development , Chlorella/metabolism , Climate Change , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...