Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 2(2): 113-133, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-28348299

ABSTRACT

A simple preparation of metal sulfide nanoparticles via the decomposition of thiobenzoate precursors at room temperature is presented and discussed. Long chain alkylamines were found to mediate the breakdown of metal thiobenzoates, such as those containing Ag, Cu, In and Cd, to produce uniform Ag2S, Cu2-xS, In2S3 and CdS nanoparticles respectively. The long chain amines are assumed to play dual roles as the nucleophilic reagent and the capping agent. It was found that sizes of the nanoparticles can be controlled by changing the type of amine used, as well as the molar ratio between amine and the precursor. We performed DFT calculations on a proposed mechanism involving an initial nucleophilic addition of amine molecule onto the thiocarboxylates. The proposed reaction was also confirmed through the analysis of by-products via infrared spectroscopy. On the basis of this understanding, we propose to manipulate the stability of the precursors by coordination with suitable stabilizing groups, such that the reaction kinetics can be modified to generate different nanostructures of interest.

2.
J Org Chem ; 72(4): 1425-30, 2007 Feb 16.
Article in English | MEDLINE | ID: mdl-17288388

ABSTRACT

Ab initio calculations (MP2/6-311+G**//B3LYP/6-31G*) were employed to investigate the mechanism of metal chloride-promoted Mukaiyama aldol reaction between trihydrosilyl enol ether and formaldehyde. The metal chlorides considered include TiCl4, BCl3, AlCl3, and GaCl3. In contrast to the concerted pathway of the uncatalyzed aldol reaction, the Lewis acid-promoted reactions favor a stepwise mechanism. Three possible stepwise pathways were located. The lowest energy pathway corresponds to a simultaneous C-C bond formation and a chlorine atom shift in the first (rate-determining) step. This process is calculated to have a low activation barrier of 12 kJ mol-1 for the TiCl4-promoted reaction. The alternative [2+2] cycloaddition and direct carbon-carbon bond formation pathways are energetically competitive. BCl3, AlCl3, and GaCl3 are predicted to be efficient catalysts for the silicon-directed aldol reaction as they strongly activate the formaldehyde electrophile. Formation of a stable pretransition state intermolecular pi-pi complex between enol silane and the activated formaldehyde (CH2=O...MCln) is a key driving force for the facile metal chloride-promoted reactions.

3.
J Org Chem ; 70(1): 124-31, 2005 Jan 07.
Article in English | MEDLINE | ID: mdl-15624914

ABSTRACT

High-level ab initio molecular orbital calculations at the G3(MP2) level of theory were carried out to investigate the effects of substituents on the energetics of the uncatalyzed Mukaiyama aldol reaction between trihydrosilyl enol ether and formaldehyde. The concerted pathway, via a twist-boat six-membered ring transition state, is strongly favored over the stepwise pathway which involves a four-membered ring oxetane intermediate. Six substituents (CH(3), NH(2), OH, F, SH, and CHO) on trihydrosilyl enol ether and eight substituents (CH(3), CF(3), NH(2), F, CHO, COOCH(3), CH=CH(2), and C(6)H(5)) on formaldehyde were considered. We find that the reaction exothermicity is the main factor that dominates reactivity. The calculated barriers vary considerably from 30 to 131 kJ mol(-1). With the exception of halogen substitution, the nucleophilicity of silyl enol ether and the electrophilicity of the aldehyde are important in promoting the reactivity of this class of aldol addition. The roles of frontier molecular orbital interactions and electrostatic interactions are also discussed. In addition, our study has revealed that employing substituents on both reactants can act in a cooperatively manner to reduce the activation barrier further. In particular, we predict that the reactions between NH(2)-substituted enol silane and CHO-, COOCH(3)-, and CF(3)-substituted aldehydes have remarkably low barriers (<12 kJ mol(-1)). Thus, these reactions may proceed readily without a catalyst below room temperature. Several substitutions on the silicon group, namely SiF(3), SiCl(3), SiMe(3), and silacyclobutyl, were considered. In agreement with experiment, the O-(silacyclobutyl) and O-(trichlorosilyl) derivatives are found to promote aldol reactivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...