Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 296: 9-16, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-25901939

ABSTRACT

Urban roughness is a major factor governing the flows and scalar transport in the atmospheric boundary layer (ABL) but our understanding is rather limited. The ventilation and pollutant removal of hypothetical urban areas consisting of various types of street canyons are examined using computational fluid dynamics (CFD). The aerodynamic resistance, ventilation efficiency, and pollutant removal are measured by the friction factor f, air exchange rate (ACH), and pollutant exchange rate (PCH), respectively. Two source configurations of passive tracer, ground-level-only (Tracer 0) and all-solid-boundary (Tracer 1) are employed to contrast their transport behavior. It is found that the ventilation and pollutant removal are largely attributed to their turbulent components (over 60%). Moreover, with a consistent support from analytical solution and CFD results, the turbulent ACH is a linear function of the square root of the friction factor (ACH'∝f(1/2)) regardless of building geometry. Tracer 0 and Tracer 1 exhibit diversified removal behavior as functions of friction factor so analytical parameterizations have not yet been developed. In view of the large portion of aged air removal by turbulence, it is proposed that the aerodynamic resistance can serve as an estimate to the minimum ventilation efficiency of urban areas.


Subject(s)
Air Movements , Air Pollutants/analysis , Air/standards , Architecture , Cities , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...