Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
2.
Front Nephrol ; 3: 1124130, 2023.
Article in English | MEDLINE | ID: mdl-37675381

ABSTRACT

Introduction: The life-sustaining treatment of hemodialysis (HD) induces recurrent and cumulative systemic circulatory stress resulting in cardiovascular injury. These recurrent insults compound preexisting cardiovascular sequalae leading to the development of myocardial injury and resulting in extremely high morbidity/mortality. This is largely a consequence of challenged microcirculatory flow within the myocardium (evidenced by detailed imaging-based studies). Currently, monitoring during HD is performed at the macrovascular level. Non-invasive monitoring of organ perfusion would allow the detection and therapeutic amelioration of this pathophysiological response to HD. Non-invasive percutaneous perfusion monitoring of the skin (using photoplethysmography-PPG) has been shown to be predictive of HD-induced myocardial stunning (a consequence of segmental ischemia). In this study, we extended these observations to include a dynamic assessment of skin perfusion during HD compared with directly measured myocardial perfusion during dialysis and cardiac contractile function. Methods: We evaluated the intradialytic microcirculatory response in 12 patients receiving conventional HD treatments using continuous percutaneous perfusion monitoring throughout HD. Cardiac echocardiography was performed prior to the initiation of HD, and again at peak-HD stress, to assess the development of regional wall motion abnormalities (RWMAs). Myocardial perfusion imaging was obtained at the same timepoints (pre-HD and peak-HD stress), utilizing intravenous administered contrast and a computerized tomography (CT)-based method. Intradialytic changes in pulse strength (derived from PPG) were compared with the development of HD-induced RWMAs (indicative of myocardial stunning) and changes in myocardial perfusion. Results: We found an association between the lowest pulse strength reduction (PPG) and the development of RWMAs (p = 0.03) and also with changes in global myocardial perfusion (CT) (p = 0.05). Ultrafiltration rate (mL/kg/hour) was a significant driver of HD-induced circulatory stress [(associated with the greatest pulse strength reduction (p = 0.01), a reduction in global myocardial perfusion (p = 0.001), and the development of RWMAs (p = 0.03)]. Discussion: Percutaneous perfusion monitoring using PPG is a useful method of assessing intradialytic hemodynamic stability and HD-induced circulatory stress. The information generated at the microcirculatory level of the skin is reflective of direct measures of myocardial perfusion and the development of HD-induced myocardial stunning. This approach for the detection and management of HD-induced cardiac injury warrants additional evaluation.

3.
J Transl Med ; 21(1): 666, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37752535

ABSTRACT

BACKGROUND: Heart diseases are among the leading causes of death worldwide, many of which lead to pathological cardiomyocyte hypertrophy and capillary rarefaction in both patients and animal models, the quantification of which is both technically challenging and highly time-consuming. Here we developed a semiautomated pipeline for quantification of the size of cardiomyocytes and capillary density in cardiac histology, termed HeartJ, by generating macros in ImageJ, a broadly used, open-source, Java-based software. METHODS: We have used modified Gomori silver staining, which is easy to perform and digitize in high throughput, or Fluorescein-labeled lectin staining. The latter can be easily combined with other stainings, allowing additional quantitative analysis on the same section, e.g., the size of cardiomyocyte nuclei, capillary density, or single-cardiomyocyte protein expression. We validated the pipeline in a mouse model of cardiac hypertrophy induced by transverse aortic constriction, and in autopsy samples of patients with and without aortic stenosis. RESULTS: In both animals and humans, HeartJ-based histology quantification revealed significant hypertrophy of cardiomyocytes reflecting other parameters of hypertrophy and rarefaction of microvasculature and enabling the analysis of protein expression in individual cardiomyocytes. The analysis also revealed that murine and human cardiomyocytes had similar diameters in health and extent of hypertrophy in disease confirming the translatability of our murine cardiac hypertrophy model. HeartJ enables a rapid analysis that would not be feasible by manual methods. The pipeline has little hardware requirements and is freely available. CONCLUSIONS: In summary, our analysis pipeline can facilitate effective and objective quantitative histological analyses in preclinical and clinical heart samples.


Subject(s)
Aortic Valve Stenosis , Myocytes, Cardiac , Humans , Animals , Mice , Cell Nucleus , Disease Models, Animal , Cardiomegaly
4.
J Am Soc Nephrol ; 34(6): 1090-1104, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36890644

ABSTRACT

SIGNIFICANCE STATEMENT: Hemodialysis (HD) results in reduced brain blood flow, and HD-related circulatory stress and regional ischemia are associated with brain injury over time. However, studies to date have not provided definitive direct evidence of acute brain injury during a HD treatment session. Using intradialytic magnetic resonance imaging (MRI) and spectroscopy to examine HD-associated changes in brain structure and neurochemistry, the authors found that multiple white (WM) tracts had diffusion imaging changes characteristic of cytotoxic edema, a consequence of ischemic insult and a precursor to fixed structural WM injury. Spectroscopy showed decreases in prefrontal N -acetyl aspartate (NAA) and choline concentrations consistent with energy deficit and perfusion anomaly. This suggests that one HD session can cause brain injury and that studies of interventions that mitigate this treatment's effects on the brain are warranted. BACKGROUND: Hemodialysis (HD) treatment-related hemodynamic stress results in recurrent ischemic injury to organs such as the heart and brain. Short-term reduction in brain blood flow and long-term white matter changes have been reported, but the basis of HD-induced brain injury is neither well-recognized nor understood, although progressive cognitive impairment is common. METHODS: We used neurocognitive assessments, intradialytic anatomical magnetic resonance imaging, diffusion tensor imaging, and proton magnetic resonance spectroscopy to examine the nature of acute HD-associated brain injury and associated changes in brain structure and neurochemistry relevant to ischemia. Data acquired before HD and during the last 60 minutes of HD (during maximal circulatory stress) were analyzed to assess the acute effects of HD on the brain. RESULTS: We studied 17 patients (mean age 63±13 years; 58.8% were male, 76.5% were White, 17.6% were Black, and 5.9% were of Indigenous ethnicity). We found intradialytic changes, including the development of multiple regions of white matter exhibiting increased fractional anisotropy with associated decreases in mean diffusivity and radial diffusivity-characteristic features of cytotoxic edema (with increase in global brain volumes). We also observed decreases in proton magnetic resonance spectroscopy-measured N -acetyl aspartate and choline concentrations during HD, indicative of regional ischemia. CONCLUSIONS: This study demonstrates for the first time that significant intradialytic changes in brain tissue volume, diffusion metrics, and brain metabolite concentrations consistent with ischemic injury occur in a single dialysis session. These findings raise the possibility that HD might have long-term neurological consequences. Further study is needed to establish an association between intradialytic magnetic resonance imaging findings of brain injury and cognitive impairment and to understand the chronic effects of HD-induced brain injury. CLINICAL TRIALS INFORMATION: NCT03342183 .


Subject(s)
Brain Injuries , White Matter , Humans , Male , Middle Aged , Aged , Female , Diffusion Tensor Imaging/methods , Aspartic Acid/metabolism , Magnetic Resonance Imaging , Brain Injuries/etiology , Brain Injuries/metabolism , Brain Injuries/pathology , Brain/diagnostic imaging , Brain/metabolism , White Matter/diagnostic imaging , Renal Dialysis/adverse effects , Spectrum Analysis , Choline/metabolism
5.
Redox Biol ; 56: 102459, 2022 10.
Article in English | MEDLINE | ID: mdl-36099852

ABSTRACT

AIMS: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular events and exhibit myocardial changes including left ventricular (LV) hypertrophy and fibrosis, overall referred to as 'uremic cardiomyopathy'. Although different CKD animal models have been studied for cardiac effects, lack of consistent reporting on cardiac function and pathology complicates clear comparison of these models. Therefore, this study aimed at a systematic and comprehensive comparison of cardiac function and cardiac pathophysiological characteristics in eight different CKD models and mouse strains, with a main focus on adenine-induced CKD. METHODS AND RESULTS: CKD of different severity and duration was induced by subtotal nephrectomy or adenine-rich diet in various strains (C57BL/6J, C57BL/6 N, hyperlipidemic C57BL/6J ApoE-/-, 129/Sv), followed by the analysis of kidney function and morphology, blood pressure, cardiac function, cardiac hypertrophy, fibrosis, myocardial calcification and inflammation using functional, histological and molecular techniques, including cardiac gene expression profiling supplemented by oxidative stress analysis. Intriguingly, despite uremia of variable degree, neither cardiac dysfunction, hypertrophy nor interstitial fibrosis were observed. However, already moderate CKD altered cardiac oxidative stress responses and enhanced oxidative stress markers in each mouse strain, with cardiac RNA sequencing revealing activation of oxidative stress signaling as well as anti-inflammatory feedback responses. CONCLUSION: This study considerably expands the knowledge on strain- and protocol-specific differences in the field of cardiorenal research and reveals that several weeks of at least moderate experimental CKD increase oxidative stress responses in the heart in a broad spectrum of mouse models. However, this was insufficient to induce relevant systolic or diastolic dysfunction, suggesting that additional "hits" are required to induce uremic cardiomyopathy. TRANSLATIONAL PERSPECTIVE: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular adverse events and exhibit myocardial changes, overall referred to as 'uremic cardiomyopathy'. We revealed that CKD increases cardiac oxidative stress responses in the heart. Nonetheless, several weeks of at least moderate experimental CKD do not necessarily trigger cardiac dysfunction and remodeling, suggesting that additional "hits" are required to induce uremic cardiomyopathy in the clinical setting. Whether the altered cardiac oxidative stress balance in CKD may increase the risk and extent of cardiovascular damage upon additional cardiovascular risk factors and/or events will be addressed in future studies.


Subject(s)
Cardiomyopathies , Renal Insufficiency, Chronic , Adenine , Animals , Anti-Inflammatory Agents , Apolipoproteins E , Disease Models, Animal , Fibrosis , Hypertrophy, Left Ventricular , Mice , Mice, Inbred C57BL , Oxidative Stress , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/metabolism
6.
Biomedicines ; 10(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35203629

ABSTRACT

Inflammation and fibrosis play an important pathophysiological role in chronic kidney disease (CKD), with pro-inflammatory mediators and leukocytes promoting organ damage with subsequent fibrosis. Since chemokines are the main regulators of leukocyte chemotaxis and tissue inflammation, we performed systemic chemokine profiling in early CKD in mice. This revealed (C-C motif) ligands 6 and 9 (CCL6 and CCL9) as the most upregulated chemokines, with significantly higher levels of both chemokines in blood (CCL6: 3-4 fold; CCL9: 3-5 fold) as well as kidney as confirmed by Enzyme-linked Immunosorbent Assay (ELISA) in two additional CKD models. Chemokine treatment in a mouse model of early adenine-induced CKD almost completely abolished the CKD-induced infiltration of macrophages and myeloid cells in the kidney without impact on circulating leukocyte numbers. The other way around, especially CCL9-blockade aggravated monocyte and macrophage accumulation in kidney during CKD development, without impact on the ratio of M1-to-M2 macrophages. In parallel, CCL9-blockade raised serum creatinine and urea levels as readouts of kidney dysfunction. It also exacerbated CKD-induced expression of collagen (3.2-fold) and the pro-inflammatory chemokines CCL2 (1.8-fold) and CCL3 (2.1-fold) in kidney. Altogether, this study reveals for the first time that chemokines CCL6 and CCL9 are upregulated early in experimental CKD, with CCL9-blockade during CKD initiation enhancing kidney inflammation and fibrosis.

7.
Circ Res ; 130(6): 814-828, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35130718

ABSTRACT

BACKGROUND: In patients with chronic kidney disease (CKD), atrial fibrillation (AF) is highly prevalent and represents a major risk factor for stroke and death. CKD is associated with atrial proarrhythmic remodeling and activation of the sympathetic nervous system. Whether reduction of the sympathetic nerve activity by renal denervation (RDN) inhibits AF vulnerability in CKD is unknown. METHODS: Left atrial (LA) fibrosis was analyzed in samples from patients with AF and concomitant CKD (estimated glomerular filtration rate [eGFR], <60 mL/min per 1.73 m2) using picrosirius red and compared with AF patients without CKD and patients with sinus rhythm with and without CKD. In a translational approach, male Sprague Dawley rats were fed with 0.25% adenine (AD)-containing chow for 16 weeks to induce CKD. At week 5, AD-fed rats underwent RDN or sham operation (AD). Rats on normal chow served as control. After 16 weeks, cardiac function and AF susceptibility were assessed by echocardiography, radiotelemetry, electrophysiological mapping, and burst stimulation, respectively. LA tissue was histologically analyzed for sympathetic innervation using tyrosine hydroxylase staining, and LA fibrosis was determined using picrosirius red. RESULTS: Sirius red staining demonstrated significantly increased LA fibrosis in patients with AF+CKD compared with AF without CKD or sinus rhythm. In rats, AD demonstrated LA structural changes with enhanced sympathetic innervation compared with control. In AD, LA enlargement was associated with prolonged duration of induced AF episodes, impaired LA conduction latency, and increased absolute conduction inhomogeneity. RDN treatment improved LA remodeling and reduced LA diameter compared with sham-operated AD. Furthermore, RDN decreased AF susceptibility and ameliorated LA conduction latency and absolute conduction inhomogeneity, independent of blood pressure reduction and renal function. CONCLUSIONS: In an experimental rat model of CKD, RDN inhibited progression of atrial structural and electrophysiological remodeling. Therefore, RDN represents a potential therapeutic tool to reduce the risk of AF in CKD, independent of changes in renal function and blood pressure.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Renal Insufficiency, Chronic , Animals , Atrial Fibrillation/etiology , Atrial Fibrillation/prevention & control , Denervation , Female , Fibrosis , Humans , Kidney/pathology , Male , Rats , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/complications
8.
Cardiovasc Res ; 118(16): 3225-3238, 2022 12 29.
Article in English | MEDLINE | ID: mdl-35104324

ABSTRACT

AIMS: Pulmonary arterial hypertension (PAH) is a devastating disease with limited therapeutic options. Vascular remodelling of pulmonary arteries, characterized by increased proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), is a hallmark of PAH. Here, we aimed to systematically characterize coagulation-independent effects of key coagulation proteases thrombin and Factor Xa (FXa) and their designated receptors, protease-activated receptor (PAR)-1 and -2, on PASMCs in vitro and experimental PAH in vivo. METHODS AND RESULTS: In human and murine PASMCs, both thrombin and FXa were identified as potent mitogens, and chemoattractants. FXa mediated its responses via PAR-1 and PAR-2, whereas thrombin signalled through PAR-1. Extracellular-signal regulated kinases 1/2, protein kinase B (AKT), and sphingosine kinase 1 were identified as downstream mediators of PAR-1 and PAR-2. Inhibition of FXa or thrombin blunted cellular responses in vitro, but unexpectedly failed to protect against hypoxia-induced PAH in vivo. However, pharmacological inhibition as well as genetic deficiency of both PAR-1 and PAR-2 significantly reduced vascular muscularization of small pulmonary arteries, diminished right ventricular systolic pressure, and right ventricular hypertrophy upon chronic hypoxia compared to wild-type controls. CONCLUSION: Our findings indicate a coagulation-independent pathogenic potential of thrombin and FXa for pulmonary vascular remodelling via acting through PAR-1 and PAR-2, respectively. While inhibition of single coagulation proteases was ineffective in preventing experimental PAH, our results propose a crucial role for PAR-1 and PAR-2 in its pathobiology, thus identifying PARs but not their dedicated activators FXa and thrombin as suitable targets for the treatment of PAH.


Subject(s)
Hypertension, Pulmonary , Thrombin , Mice , Humans , Animals , Thrombin/metabolism , Factor Xa/metabolism , Factor Xa/pharmacology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/prevention & control , Vascular Remodeling , Receptor, PAR-1/genetics , Receptor, PAR-2/genetics , Receptor, PAR-2/metabolism , Hypoxia
9.
J Alzheimers Dis ; 85(4): 1755-1766, 2022.
Article in English | MEDLINE | ID: mdl-34958027

ABSTRACT

BACKGROUND: Altered gait is a frequent feature of Alzheimer's disease (AD), as is vitamin D deficiency. Treatment with memantine and vitamin D can protect cortical axons from exposure to amyloid-ß and glutamate toxicity, suggesting this combination may mitigate altered gait in AD. OBJECTIVE: Investigate the effects of vitamin D deprivation and subsequent treatment with memantine and vitamin D enrichment on gait performance in APPswe/PS1dE9 mice. METHODS: Male APPswe/PS1dE9 mice were split into four groups (n = 14 each) at 2.5 months of age. A control group was fed a standard diet throughout while the other three groups started a vitamin D-deficient diet at month 6. One group remained on this deficient diet for the rest of the study. At month 9, the other two groups began treatment with either memantine alone or memantine combined with 10 IU/g of vitamin D. Gait was assessed using CatWalk at months 6, 9, 12, and 15. RESULTS: Vitamin D deprivation led to a 13% increase in hind stride width by month 15 (p < 0.001). Examination of the treatment groups at month 15 revealed that mice treated with memantine alone still showed an increase in hind stride width compared to controls (p < 0.01), while mice treated with memantine and vitamin D did not (p = 0.21). CONCLUSION: Vitamin D deprivation led to impaired postural control in the APPswe/PS1dE9 model. Treatment with memantine and vitamin D, but not memantine alone, prevented this impairment. Future work should explore the potential for treatments incorporating vitamin D supplementation to improve gait in people with AD.


Subject(s)
Alzheimer Disease/drug therapy , Gait Analysis , Memantine/therapeutic use , Vitamin D Deficiency/drug therapy , Vitamin D/therapeutic use , Animals , Disease Models, Animal , Male , Memantine/pharmacology , Mice , Mice, Transgenic , Vitamin D/pharmacology
10.
J Clin Invest ; 131(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34596056

ABSTRACT

Enhanced signaling via RTKs in pulmonary hypertension (PH) impedes current treatment options because it perpetuates proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Here, we demonstrated hyperphosphorylation of multiple RTKs in diseased human vessels and increased activation of their common downstream effector phosphatidylinositol 3'-kinase (PI3K), which thus emerged as an attractive therapeutic target. Systematic characterization of class IA catalytic PI3K isoforms identified p110α as the key regulator of pathogenic signaling pathways and PASMC responses (proliferation, migration, survival) downstream of multiple RTKs. Smooth muscle cell-specific genetic ablation or pharmacological inhibition of p110α prevented onset and progression of pulmonary hypertension (PH) as well as right heart hypertrophy in vivo and even reversed established vascular remodeling and PH in various animal models. These effects were attributable to both inhibition of vascular proliferation and induction of apoptosis. Since this pathway is abundantly activated in human disease, p110α represents a central target in PH.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/physiology , Hypertension, Pulmonary/drug therapy , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Adult , Animals , Cells, Cultured , Humans , Hypertension, Pulmonary/etiology , Infant , Male , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/drug effects , Proto-Oncogene Proteins c-akt/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
11.
Cells ; 10(8)2021 07 27.
Article in English | MEDLINE | ID: mdl-34440669

ABSTRACT

Multiorgan tropism of SARS-CoV-2 has previously been shown for several major organs. We have comprehensively analyzed 25 different formalin-fixed paraffin-embedded (FFPE) tissues/organs from autopsies of fatal COVID-19 cases (n = 8), using histopathological assessment, detection of SARS-CoV-2 RNA using polymerase chain reaction and RNA in situ hybridization, viral protein using immunohistochemistry, and virus particles using transmission electron microscopy. SARS-CoV-2 RNA was mainly localized in epithelial cells across all organs. Next to lung, trachea, kidney, heart, or liver, viral RNA was also found in tonsils, salivary glands, oropharynx, thyroid, adrenal gland, testicles, prostate, ovaries, small bowel, lymph nodes, skin and skeletal muscle. Viral RNA was predominantly found in cells expressing ACE2, TMPRSS2, or both. The SARS-CoV-2 replicating RNA was also detected in these organs. Immunohistochemistry and electron microscopy were not suitable for reliable and specific SARS-CoV-2 detection in autopsies. These findings were validated using in situ hybridization on external COVID-19 autopsy samples (n = 9). Apart from the lung, correlation of viral detection and histopathological assessment did not reveal any specific alterations that could be attributed to SARS-CoV-2. In summary, SARS-CoV-2 and its replication could be observed across all organ systems, which co-localizes with ACE2 and TMPRSS2 mainly in epithelial but also in mesenchymal and endothelial cells. Apart from the respiratory tract, no specific (histo-)morphologic alterations could be assigned to the SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/metabolism , Endothelial Cells/metabolism , RNA, Viral/analysis , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Aged , Autopsy , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Endothelial Cells/pathology , Endothelial Cells/virology , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Organ Specificity , Tropism
12.
Microb Biotechnol ; 14(4): 1627-1641, 2021 07.
Article in English | MEDLINE | ID: mdl-33993637

ABSTRACT

Virus detection methods are important to cope with the SARS-CoV-2 pandemics. Apart from the lung, SARS-CoV-2 was detected in multiple organs in severe cases. Less is known on organ tropism in patients developing mild or no symptoms, and some of such patients might be missed in symptom-indicated swab testing. Here, we tested and validated several approaches and selected the most reliable RT-PCR protocol for the detection of SARS-CoV-2 RNA in patients' routine diagnostic formalin-fixed and paraffin-embedded (FFPE) specimens available in pathology, to assess (i) organ tropism in samples from COVID-19-positive patients, (ii) unrecognized cases in selected tissues from negative or not-tested patients during a pandemic peak, and (iii) retrospectively, pre-pandemic lung samples. We identified SARS-CoV-2 RNA in seven samples from confirmed COVID-19 patients, in two gastric biopsies, one small bowel and one colon resection, one lung biopsy, one pleural resection and one pleural effusion specimen, while all other specimens were negative. In the pandemic peak cohort, we identified one previously unrecognized COVID-19 case in tonsillectomy samples. All pre-pandemic lung samples were negative. In conclusion, SARS-CoV-2 RNA detection in FFPE pathology specimens can potentially improve surveillance of COVID-19, allow retrospective studies, and advance our understanding of SARS-CoV-2 organ tropism and effects.


Subject(s)
COVID-19 , RNA, Viral/isolation & purification , SARS-CoV-2 , COVID-19/diagnosis , Diagnostic Tests, Routine , Humans , Pandemics , Retrospective Studies
13.
J Alzheimers Dis ; 81(1): 375-388, 2021.
Article in English | MEDLINE | ID: mdl-33780366

ABSTRACT

BACKGROUND: Vitamin D deficiency and altered body composition are common in Alzheimer's disease (AD). Memantine with vitamin D supplementation can protect cortical axons against amyloid-ß exposure and glutamate toxicity. OBJECTIVE: To study the effects of vitamin D deprivation and subsequent treatment with memantine and vitamin D enrichment on whole-body composition using a mouse model of AD. METHODS: Male APPswe/PS1dE9 mice were divided into four groups at 2.5 months of age: the control group (n = 14) was fed a standard diet throughout; the remaining mice were started on a vitamin D-deficient diet at month 6. The vitamin D-deficient group (n = 14) remained on the vitamin D-deficient diet for the rest of the study. Of the remaining two groups, one had memantine (n = 14), while the other had both memantine and 10 IU/g vitamin D (n = 14), added to their diet at month 9. Serum 25(OH)D levels measured at months 6, 9, 12, and 15 confirmed vitamin D levels were lower in mice on vitamin D-deficient diets and higher in the vitamin D-supplemented mice. Micro-computed tomography was performed at month 15 to determine whole-body composition. RESULTS: In mice deprived of vitamin D, memantine increased bone mineral content (8.7% increase, p < 0.01) and absolute skeletal tissue mass (9.3% increase, p < 0.05) and volume (9.2% increase, p < 0.05) relative to controls. This was not observed when memantine treatment was combined with vitamin D enrichment. CONCLUSION: Combination treatment of vitamin D and memantine had no negative effects on body composition. Future studies should clarify whether vitamin D status impacts the effects of memantine treatment on bone physiology in people with AD.


Subject(s)
Alzheimer Disease/drug therapy , Body Composition/drug effects , Dopamine Agents/therapeutic use , Memantine/therapeutic use , Vitamin D Deficiency/drug therapy , Vitamin D/therapeutic use , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Dietary Supplements , Disease Models, Animal , Dopamine Agents/pharmacology , Male , Memantine/pharmacology , Mice , Mice, Transgenic , Presenilin-1/genetics , Vitamin D/pharmacology , Vitamin D Deficiency/blood , Vitamin D Deficiency/genetics
14.
Heart Rhythm ; 18(3): 455-464, 2021 03.
Article in English | MEDLINE | ID: mdl-33080392

ABSTRACT

BACKGROUND: High night-to-night variability in obstructive sleep apnea (OSA) is associated with atrial fibrillation (AF). Obstructive apneas are characterized by intermittent deoxygenation-reoxygenation and intrathoracic pressure swings during ineffective inspiration against occluded upper airways. OBJECTIVE: We elucidated the effect of repeated exposure to transient OSA conditions simulated by intermittent negative upper airway pressure (INAP) on the development of an AF substrate. METHODS: INAP (48 events/4 h; apnea-hypopnea index 12 events/h) was applied in sedated spontaneously breathing rats (2% isoflurane) to simulate mild-to-moderate OSA. Rats without INAP served as a control group (CTR). In an acute test series (ATS), rats were either killed immediately (n = 9 per group) or after 24 hours of recovery (ATS-REC: n = 5 per group). To simulate high night-to-night variability in OSA, INAP applications (n = 10; 24 events/4 h; apnea-hypopnea index 6/h) were repeated every second day for 3 weeks in a chronic test series (CTS). RESULTS: INAP increased atrial oxidative stress acutely, represented in decreases of reduced to oxidized glutathione ratio (ATS: INAP: 0.33 ± 0.05 vs CTR: 1 ± 0.26; P = .016), which was reversible after 24 hours (ATS-REC: INAP vs CTR; P = .274). Although atrial oxidative stress did not accumulate in the CTS, atrial histological analysis revealed increased cardiomyocyte diameters, reduced connexin 43 expression, and increased interstitial fibrosis formation (CTS: INAP 7.0% ± 0.5% vs CTR 5.1% ± 0.3%; P = .013), which were associated with longer inducible AF episodes (CTS: INAP: 11.65 ± 4.43 seconds vs CTR: 0.7 ± 0.33 seconds; P = .033). CONCLUSION: Acute simulation of OSA was associated with reversible atrial oxidative stress. Cumulative exposure to these transient OSA-related conditions resulted in AF substrates and was associated with increased AF susceptibility. Mild-to-moderate OSA with high night-to-night variability may deserve intensive management to prevent atrial substrate development.


Subject(s)
Airway Remodeling/physiology , Atrial Fibrillation/etiology , Heart Atria/physiopathology , Sleep Apnea, Obstructive/complications , Animals , Atrial Fibrillation/physiopathology , Chronic Disease , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley
15.
Biol Psychiatry ; 88(3): 273-281, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32312577

ABSTRACT

BACKGROUND: Functional dysconnection in schizophrenia is underwritten by a pathophysiology of the glutamate neurotransmission that affects the excitation-inhibition balance in key nodes of the salience network. Physiologically, this manifests as aberrant effective connectivity in intrinsic connections involving inhibitory interneurons. In computational terms, this produces a pathology of evidence accumulation and ensuing inference in the brain. Finally, the pathophysiology and aberrant inference would partially account for the psychopathology of schizophrenia as measured in terms of symptoms and signs. We refer to this formulation as the 3-level hypothesis. METHODS: We tested the hypothesis in core nodes of the salience network (the dorsal anterior cingulate cortex [dACC] and the anterior insula) of 20 patients with first-episode psychosis and 20 healthy control subjects. We established 3-way correlations between the magnetic resonance spectroscopy measures of glutamate, effective connectivity of resting-state functional magnetic resonance imaging, and correlations between measures of this connectivity and estimates of precision (inherent in evidence accumulation in the Stroop task) and psychopathology. RESULTS: Glutamate concentration in the dACC was associated with higher and lower inhibitory connectivity in the dACC and in the anterior insula, respectively. Crucially, glutamate concentration correlated negatively with the inhibitory influence on the excitatory neuronal population in the dACC of subjects with first-episode psychosis. Furthermore, aberrant computational parameters of the Stroop task performance were associated with aberrant inhibitory connections. Finally, the strength of connections from the dACC to the anterior insula correlated negatively with severity of social withdrawal. CONCLUSIONS: These findings support a link between glutamate-mediated cortical disinhibition, effective-connectivity deficits, and computational performance in psychosis.


Subject(s)
Schizophrenia , Cerebral Cortex/diagnostic imaging , Glutamic Acid , Gyrus Cinguli , Humans , Magnetic Resonance Imaging , Schizophrenia/diagnostic imaging
16.
J Alzheimers Dis ; 73(4): 1385-1405, 2020.
Article in English | MEDLINE | ID: mdl-31958093

ABSTRACT

Identification of biological changes underlying the early symptoms of Alzheimer's disease (AD) will help to identify and stage individuals prior to symptom onset. The limbic system, which supports episodic memory and is impaired early in AD, is a primary target. In this study, brain metabolism and microstructure evaluated by high field (7 Tesla) proton magnetic resonance spectroscopy (1H-MRS) and diffusion tensor imaging (DTI) were evaluated in the limbic system of eight individuals with mild cognitive impairment (MCI), nine with AD, and sixteen normal elderly controls (NEC). Left hippocampal glutamate and posterior cingulate N-acetyl aspartate concentrations were reduced in MCI and AD compared to NEC. Differences in DTI metrics indicated volume and white matter loss along the cingulum in AD compared to NEC. Metabolic and microstructural changes were associated with episodic memory performance assessed using Craft Story 21 Recall and Benson Complex Figure Copy. The current study suggests that metabolite concentrations measured using 1H-MRS may provide insight into the underlying metabolic and microstructural processes of episodic memory impairment.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Aspartic Acid/analogs & derivatives , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Glutamic Acid/metabolism , Gyrus Cinguli/diagnostic imaging , Hippocampus/metabolism , Memory, Episodic , White Matter/diagnostic imaging , Aged , Aged, 80 and over , Aspartic Acid/metabolism , Diffusion Tensor Imaging , Female , Gyrus Cinguli/metabolism , Humans , Limbic System/diagnostic imaging , Limbic System/metabolism , Magnetic Resonance Spectroscopy , Male , Mental Status and Dementia Tests , Middle Aged , Neuropsychological Tests , Pilot Projects , White Matter/metabolism
17.
Clin Exp Ophthalmol ; 48(1): 24-30, 2020 01.
Article in English | MEDLINE | ID: mdl-31525271

ABSTRACT

IMPORTANCE: Nasolacrimal occlusion (NLO) is effective in reducing systemic absorption of eye drop medication but it is difficult and often performed poorly. We propose an alternative easier and equally effective technique. BACKGROUND: To test the effectiveness of systemic absorption, we evaluated plasma concentration and ocular effects after topically administered timolol and compared to NLO. DESIGN: Cross-over trial carried out in Capital Eye Specialist, Wellington. PARTICIPANTS: A total of 21 subjects over 18 years without contraindications for topical beta-blocker medication and not using systemic beta-blockers. METHODS: During three clinic visits separated by at least one week, alternative approaches to reduce systemic eye drop absorption were tested. These were: (a) nasolacrimal (punctal) occlusion for 5 min, (b) tissue press method or (c) no intervention. Timolol plasma levels were measured 1 h after drop application. At each visit, baseline measurement of blood pressure, heart rate and intraocular pressure (IOP) were performed, and repeated 1 h after timolol 0.5% eye drop application. MAIN OUTCOME MEASURES: Comparison of timolol plasma concentration after each intervention. Secondary outcome measurements included effects on blood pressure, heart rate and IOP. RESULTS: Plasma timolol concentrations after tissue press method and NLO were significantly lower than those without intervention. Comparing tissue press method to NLO, there were no significant differences in plasma levels of timolol, blood pressure, heart rate or IOP. CONCLUSION AND RELEVANCE: The tissue press method is equally effective as NLO in reducing systemic absorption of timolol. It is also easier and faster to administer.


Subject(s)
Adrenergic beta-Antagonists/adverse effects , Antihypertensive Agents/adverse effects , Drug-Related Side Effects and Adverse Reactions/prevention & control , Glaucoma, Open-Angle/drug therapy , Nasolacrimal Duct/physiology , Timolol/adverse effects , Administration, Ophthalmic , Adrenergic beta-Antagonists/pharmacokinetics , Antihypertensive Agents/pharmacokinetics , Blood Pressure/drug effects , Bradycardia/prevention & control , Cross-Over Studies , Double-Blind Method , Dyspnea/prevention & control , Female , Glaucoma, Open-Angle/metabolism , Heart Rate/drug effects , Humans , Intraocular Pressure/drug effects , Male , Middle Aged , Ocular Absorption/drug effects , Ophthalmic Solutions , Timolol/pharmacokinetics
18.
Cell Signal ; 57: 76-88, 2019 05.
Article in English | MEDLINE | ID: mdl-30682543

ABSTRACT

Macrophage migration inhibitory factor (MIF) is a cytokine expressed in various cell types, including hematopoietic, epithelial, endothelial, mesenchymal and neuronal cells. Altered MIF expression has been associated with a multitude of diseases ranging from inflammatory disorders like sepsis, lupus and rheumatoid arthritis to organ pathologies such as heart failure, myocardial infarction, acute kidney injury, organ fibrosis and a number of malignancies. The implication of MIF in these diseases was supported by numerous animal studies. MIF acts in an autocrine and paracrine manner via binding and activating the receptors CD74/CD44, CXCR2, CXCR4 and CXCR7. Upon receptor binding, several downstream signaling pathways were shown to be activated in vivo, including ERK1/2, AMPK and AKT. Expression of MIF receptors is not uniform in various cells, resulting in differential responses to MIF across various tissues and pathologies. Within cells, MIF can directly bind and interact with intracellular proteins, such as the constitutive photomorphogenic-9 (COP9) signalosome subunit 5 (CSN5), p53 or thioredoxin-interacting protein (TXNIP). D-dopachrome tautomerase (D-DT or MIF-2) was recognized to be a structural and functional homolog of MIF, which could exert overlapping effects, raising further the complexity of canonical MIF signaling pathways. Here, we provide an overview of the expression and regulation of MIF, D-DT and their receptors. We also discuss the downstream signaling pathways regulated by MIF/D-DT and their pathological roles in different tissue, particularly in the heart and the kidney.


Subject(s)
Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Signal Transduction/physiology , Animals , Antigens, Differentiation, B-Lymphocyte/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Protein Binding/physiology
19.
NMR Biomed ; 31(11): e4002, 2018 11.
Article in English | MEDLINE | ID: mdl-30144183

ABSTRACT

A short echo time (TE ) is commonly used for brain glutamate measurement by 1 H MRS to minimize drawbacks of long TE such as signal modulation due to J evolution and T2 relaxation. However, J coupling causes the spectral patterns of glutamate to change with TE , and the shortest achievable TE may not produce the optimal glutamate measurement. The purpose of this study was to determine the optimal TE for glutamate measurement at 7 T using semi-LASER (localization by adiabatic selective refocusing). Time-domain simulations were performed to model the TE dependence of glutamate signal energy, a measure of glutamate signal strength, and were verified against measurements made in the human sensorimotor cortex (five subjects, 2 × 2 × 2 cm3 voxel, 16 averages) on a 7 T MRI scanner. Simulations showed a local maximum of glutamate signal energy at TE  = 107 ms. In vivo, TE  = 105 ms produced a low Cramér-Rao lower bound of 6.5 ± 2.0% across subjects, indicating high-quality fits of the prior knowledge model to in vivo data. TE  = 105 ms also produced the greatest glutamate signal energy with the smallest inter-subject glutamate-to-creatine ratio (Glu/Cr) coefficient of variation (CV), 4.6%. Using these CVs, we performed sample size calculations to estimate the number of participants per group required to detect a 10% change in Glu/Cr between two groups with 95% confidence. 13 were required at TE  = 45 ms, the shortest achievable echo time on our 7 T MRI scanner, while only 5 were required at TE  = 105 ms, indicating greater statistical power. These results indicate that TE  = 105 ms is optimum for in vivo glutamate measurement at 7 T with semi-LASER. Using long TE decreases power deposition by allowing lower maximum RF pulse amplitudes in conjunction with longer RF pulses. Importantly, long TE minimizes macromolecule contributions, eliminating the requirement for acquisition of separate macromolecule spectra or macromolecule fitting techniques, which add additional scan time or bias the estimated glutamate fit.


Subject(s)
Brain/metabolism , Glutamic Acid/metabolism , Magnetic Resonance Imaging , Adult , Female , Glutamine/metabolism , Humans , Male , Signal Processing, Computer-Assisted , Time Factors , gamma-Aminobutyric Acid/metabolism
20.
PLoS One ; 13(8): e0198053, 2018.
Article in English | MEDLINE | ID: mdl-30157179

ABSTRACT

Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation that may modulate cortical excitability, metabolite concentration, and human behaviour. The supplementary motor area (SMA) has been largely ignored as a potential target for tDCS neurorehabilitation but is an important region in motor compensation after brain injury with strong efferent connections to the primary motor cortex (M1). The objective of this work was to measure tissue metabolite changes in the human motor cortex immediately following tDCS. We hypothesized that bihemispheric tDCS would change levels of metabolites involved in neuromodulation including N-acetylaspartate (NAA), glutamate (Glu), and creatine (tCr). In this single-blind, randomized, cross-over study, fifteen healthy adults aged 21-60 participated in two 7T MRI sessions, to identify changes in metabolite concentrations by magnetic resonance spectroscopy. Immediately after 20 minutes of tDCS, there were no significant changes in metabolite levels or metabolite ratios comparing tDCS to sham. However there was a trend toward increased NAA/tCr concentration (p = 0.08) in M1 under the stimulating cathode. There was a strong, positive correlation between the change in the absolute concentration of NAA and the change in the absolute concentration of tCr (p<0.001) suggesting an effect of tDCS. Both NAA and creatine are important markers of neurometabolism. Our findings provide novel insight into the modulation of neural metabolites in the motor cortex immediately following application of bihemispheric tDCS.


Subject(s)
Cortical Excitability/physiology , Evoked Potentials, Motor/physiology , Magnetic Resonance Spectroscopy/methods , Motor Cortex , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods , Adult , Combined Modality Therapy , Cross-Over Studies , Female , Glutamic Acid/metabolism , Humans , Male , Middle Aged , Motor Cortex/radiation effects , Single-Blind Method , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...