Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 22(11): 2080-90, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18685611

ABSTRACT

A cytokine-dependent (FL5.12), drug-sensitive, p53 wild type (WT) and a doxorubicin-resistant derivative line (FL/Doxo) were used to determine the mechanisms that could result in drug resistance of early hematopoietic precursor cells. Drug resistance was associated with decreased p53 induction after doxorubicin treatment, which was due to a higher level of proteasomal degradation of p53. Dominant-negative (DN) p53 genes increased the resistance to chemotherapeutic drugs, MDM-2 and MEK inhibitors, further substantiating the role of p53 in therapeutic sensitivity. The involvement of signal transduction and apoptotic pathways was examined, as drug resistance did not appear to be due to increased drug efflux. Drug-resistant FL/Doxo cells had higher levels of activated Raf/MEK/ERK signaling and decreased induction of apoptosis when cultured in the presence of doxorubicin than drug-sensitive FL5.12 cells. Introduction of DN MEK1 increased drug sensitivity, whereas constitutively active (CA) MEK1 or conditionally active BRAF augmented resistance, documenting the importance of the Raf/MEK/ERK pathway in drug resistance. MEK inhibitors synergized with chemotherapeutic drugs to reduce the IC(50). Thus the p53 and Raf/MEK/ERK pathways play key roles in drug sensitivity. Targeting these pathways may be effective in certain drug-resistant leukemias that are WT at p53.


Subject(s)
Drug Resistance , Extracellular Signal-Regulated MAP Kinases/metabolism , Hematopoietic Stem Cells/drug effects , Mitogen-Activated Protein Kinase Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , raf Kinases/metabolism , Animals , Annexin A5/metabolism , Apoptosis/drug effects , Blotting, Western , Caspases/metabolism , Cells, Cultured , Cysteine Proteinase Inhibitors/pharmacology , Doxorubicin/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Genes, Dominant , Hematopoietic Stem Cells/metabolism , Imidazoles/pharmacology , Leupeptins/pharmacology , Mice , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Phosphorylation/drug effects , Piperazines/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/physiology , Tumor Suppressor Protein p53/antagonists & inhibitors , raf Kinases/antagonists & inhibitors
2.
Oncogene ; 27(29): 4086-95, 2008 Jul 03.
Article in English | MEDLINE | ID: mdl-18332865

ABSTRACT

Ectopic expression of mutant forms of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) lacking lipid (G129E) or lipid and protein (C124S) phosphatase activity decreased sensitivity of MCF-7 breast cancer cells, which have wild-type PTEN, to doxorubicin and increased sensitivity to the mammalian target of rapamycin (mTOR) inhibitor rapamycin. Cells transfected with a mutant PTEN gene lacking both lipid and protein phosphatase activities were more resistant to doxorubicin than cells transfected with the PTEN mutant lacking lipid phosphatase activity indicating that the protein phosphatase activity of PTEN was also important in controlling the sensitivity to doxorubicin, while no difference was observed between the lipid (G129E) and lipid and protein (C124S) phosphatase PTEN mutants in terms of sensitivity to rapamycin. A synergistic inhibitory interaction was observed when doxorubicin was combined with rapamycin in the phosphatase-deficient PTEN-transfected cells. Interference with the lipid phosphatase activity of PTEN was sufficient to activate Akt/mTOR/p70S6K signaling. These studies indicate that disruption of the normal activity of the PTEN phosphatase can have dramatic effects on the therapeutic sensitivity of breast cancer cells. Mutations in the key residues which control PTEN lipid and protein phosphatase may act as dominant-negative mutants to suppress endogenous PTEN and alter the sensitivity of breast cancer patients to chemo- and targeted therapies.


Subject(s)
Breast Neoplasms/enzymology , Drug Resistance, Neoplasm , Mutation, Missense , PTEN Phosphohydrolase/metabolism , Protein Kinases/metabolism , Signal Transduction , Amino Acid Substitution , Antibiotics, Antineoplastic/agonists , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Doxorubicin/agonists , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Female , Gene Expression , Humans , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/genetics , Protein Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Sirolimus/agonists , Sirolimus/pharmacology , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...