Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 323(5): C1374-C1392, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36121129

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a leading cause of death and cigarette smoke is the main risk factor. Detecting its earliest stages and preventing a decline in lung function are key goals. The pathogenesis of COPD is complex but has some similarities to cystic fibrosis (CF), a disease caused by mutations in the cftr gene. CF leads to chronic inflammation, abnormal mucus, and cycles of infection. Cigarette smoke exposure also causes CFTR dysfunction, and it is probably not a coincidence that inflammation, mucus obstruction, and infections are also characteristics of COPD, although the exacerbations can be quite different. We review here the acute effects of cigarette smoke on CFTR function and its potential role in COPD. Understanding CFTR regulation by cigarette smoke may identify novel drug targets and facilitate the development of therapeutics that reduce the progression and severity of COPD.


Subject(s)
Cigarette Smoking , Cystic Fibrosis , Pulmonary Disease, Chronic Obstructive , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cigarette Smoking/adverse effects , Pulmonary Disease, Chronic Obstructive/genetics , Cystic Fibrosis/genetics , Nicotiana , Inflammation
2.
Am J Physiol Cell Physiol ; 314(1): C118-C134, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28978522

ABSTRACT

Air pollution stimulates airway epithelial secretion through a cholinergic reflex that is unaffected in cystic fibrosis (CF), yet a strong correlation is observed between passive smoke exposure in the home and impaired lung function in CF children. Our aim was to study the effects of low smoke concentrations on cystic fibrosis transmembrane conductance regulator (CFTR) function in vitro. Cigarette smoke extract stimulated robust anion secretion that was transient, mediated by CFTR, and dependent on cAMP-dependent protein kinase activation. Secretion was initiated by reactive oxygen species (ROS) and mediated by at least two distinct pathways: autocrine activation of EP4 prostanoid receptors and stimulation of Ca2+ store-operated cAMP signaling. The response was absent in cells expressing the most common disease-causing mutant F508del-CFTR. In addition to the initial secretion, prolonged exposure of non-CF bronchial epithelial cells to low levels of smoke also caused a gradual decline in CFTR functional expression. F508del-CFTR channels that had been rescued by the CF drug combination VX-809 (lumacaftor) + VX-770 (ivacaftor) were more sensitive to this downregulation than wild-type CFTR. The results suggest that CFTR-mediated secretion during acute cigarette smoke exposure initially protects the airway epithelium while prolonged exposure reduces CFTR functional expression and reduces the efficacy of CF drugs.


Subject(s)
Bronchi/drug effects , Cyclic AMP/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/agonists , Epithelial Cells/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Tobacco Smoke Pollution/adverse effects , Aminophenols/pharmacology , Aminopyridines/pharmacology , Autocrine Communication/drug effects , Benzodioxoles/pharmacology , Bronchi/metabolism , Bronchi/pathology , Calcium Signaling/drug effects , Cell Line , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Mutation , Quinolones/pharmacology , Receptors, Prostaglandin E, EP4 Subtype/agonists , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Second Messenger Systems/drug effects , Secretory Pathway/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...