Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
medRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38585811

ABSTRACT

Purpose: To identify genetic etiologies and genotype/phenotype associations for unsolved ocular congenital cranial dysinnervation disorders (oCCDDs). Methods: We coupled phenotyping with exome or genome sequencing of 467 pedigrees with genetically unsolved oCCDDs, integrating analyses of pedigrees, human and animal model phenotypes, and de novo variants to identify rare candidate single nucleotide variants, insertion/deletions, and structural variants disrupting protein-coding regions. Prioritized variants were classified for pathogenicity and evaluated for genotype/phenotype correlations. Results: Analyses elucidated phenotypic subgroups, identified pathogenic/likely pathogenic variant(s) in 43/467 probands (9.2%), and prioritized variants of uncertain significance in 70/467 additional probands (15.0%). These included known and novel variants in established oCCDD genes, genes associated with syndromes that sometimes include oCCDDs (e.g., MYH10, KIF21B, TGFBR2, TUBB6), genes that fit the syndromic component of the phenotype but had no prior oCCDD association (e.g., CDK13, TGFB2), genes with no reported association with oCCDDs or the syndromic phenotypes (e.g., TUBA4A, KIF5C, CTNNA1, KLB, FGF21), and genes associated with oCCDD phenocopies that had resulted in misdiagnoses. Conclusion: This study suggests that unsolved oCCDDs are clinically and genetically heterogeneous disorders often overlapping other Mendelian conditions and nominates many candidates for future replication and functional studies.

2.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38565148

ABSTRACT

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , Exome , Rare Diseases , Humans , DNA Copy Number Variations/genetics , Rare Diseases/genetics , Rare Diseases/diagnosis , Exome/genetics , Male , Female , Cohort Studies , Genetic Testing/methods
5.
medRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37873196

ABSTRACT

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and with new innovative methods can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the GREGoR consortium. Each family's CNV data was analyzed using the seqr platform and candidate CNVs classified using the 2020 ACMG/ClinGen CNV interpretation standards. We developed additional evidence criteria to address situations not covered by the current standards. The addition of CNV calling to exome analysis identified causal CNVs for 173 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb with estimates that 44% would not have been detected by standard chromosomal microarrays. The causal CNVs consisted of 141 deletions, 15 duplications, 4 suspected complex structural variants (SVs), 3 insertions and 10 complex SVs, the latter two groups being identified by orthogonal validation methods. We interpreted 153 CNVs as likely pathogenic/pathogenic and 20 CNVs as high interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.

6.
Am J Hum Genet ; 110(9): 1454-1469, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37595579

ABSTRACT

Short-read genome sequencing (GS) holds the promise of becoming the primary diagnostic approach for the assessment of autism spectrum disorder (ASD) and fetal structural anomalies (FSAs). However, few studies have comprehensively evaluated its performance against current standard-of-care diagnostic tests: karyotype, chromosomal microarray (CMA), and exome sequencing (ES). To assess the clinical utility of GS, we compared its diagnostic yield against these three tests in 1,612 quartet families including an individual with ASD and in 295 prenatal families. Our GS analytic framework identified a diagnostic variant in 7.8% of ASD probands, almost 2-fold more than CMA (4.3%) and 3-fold more than ES (2.7%). However, when we systematically captured copy-number variants (CNVs) from the exome data, the diagnostic yield of ES (7.4%) was brought much closer to, but did not surpass, GS. Similarly, we estimated that GS could achieve an overall diagnostic yield of 46.1% in unselected FSAs, representing a 17.2% increased yield over karyotype, 14.1% over CMA, and 4.1% over ES with CNV calling or 36.1% increase without CNV discovery. Overall, GS provided an added diagnostic yield of 0.4% and 0.8% beyond the combination of all three standard-of-care tests in ASD and FSAs, respectively. This corresponded to nine GS unique diagnostic variants, including sequence variants in exons not captured by ES, structural variants (SVs) inaccessible to existing standard-of-care tests, and SVs where the resolution of GS changed variant classification. Overall, this large-scale evaluation demonstrated that GS significantly outperforms each individual standard-of-care test while also outperforming the combination of all three tests, thus warranting consideration as the first-tier diagnostic approach for the assessment of ASD and FSAs.


Subject(s)
Autism Spectrum Disorder , Female , Pregnancy , Humans , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Pregnancy Trimester, First , Ultrasonography, Prenatal , Chromosome Mapping , Exome
7.
Nat Genet ; 55(9): 1589-1597, 2023 09.
Article in English | MEDLINE | ID: mdl-37604963

ABSTRACT

Copy number variants (CNVs) are major contributors to genetic diversity and disease. While standardized methods, such as the genome analysis toolkit (GATK), exist for detecting short variants, technical challenges have confounded uniform large-scale CNV analyses from whole-exome sequencing (WES) data. Given the profound impact of rare and de novo coding CNVs on genome organization and human disease, we developed GATK-gCNV, a flexible algorithm to discover rare CNVs from sequencing read-depth information, complete with open-source distribution via GATK. We benchmarked GATK-gCNV in 7,962 exomes from individuals in quartet families with matched genome sequencing and microarray data, finding up to 95% recall of rare coding CNVs at a resolution of more than two exons. We used GATK-gCNV to generate a reference catalog of rare coding CNVs in WES data from 197,306 individuals in the UK Biobank, and observed strong correlations between per-gene CNV rates and measures of mutational constraint, as well as rare CNV associations with multiple traits. In summary, GATK-gCNV is a tunable approach for sensitive and specific CNV discovery in WES data, with broad applications.


Subject(s)
DNA Copy Number Variations , Exome , Humans , Exome/genetics , Exome Sequencing , DNA Copy Number Variations/genetics , Chromosome Mapping , Exons
8.
JAMA Neurol ; 80(9): 980-988, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37486637

ABSTRACT

Importance: Polymicrogyria is the most commonly diagnosed cortical malformation and is associated with neurodevelopmental sequelae including epilepsy, motor abnormalities, and cognitive deficits. Polymicrogyria frequently co-occurs with other brain malformations or as part of syndromic diseases. Past studies of polymicrogyria have defined heterogeneous genetic and nongenetic causes but have explained only a small fraction of cases. Objective: To survey germline genetic causes of polymicrogyria in a large cohort and to consider novel polymicrogyria gene associations. Design, Setting, and Participants: This genetic association study analyzed panel sequencing and exome sequencing of accrued DNA samples from a retrospective cohort of families with members with polymicrogyria. Samples were accrued over more than 20 years (1994 to 2020), and sequencing occurred in 2 stages: panel sequencing (June 2015 to January 2016) and whole-exome sequencing (September 2019 to March 2020). Individuals seen at multiple clinical sites for neurological complaints found to have polymicrogyria on neuroimaging, then referred to the research team by evaluating clinicians, were included in the study. Targeted next-generation sequencing and/or exome sequencing were performed on probands (and available parents and siblings) from 284 families with individuals who had isolated polymicrogyria or polymicrogyria as part of a clinical syndrome and no genetic diagnosis at time of referral from clinic, with sequencing from 275 families passing quality control. Main Outcomes and Measures: The number of families in whom genetic sequencing yielded a molecular diagnosis that explained the polymicrogyria in the family. Secondarily, the relative frequency of different genetic causes of polymicrogyria and whether specific genetic causes were associated with co-occurring head size changes were also analyzed. Results: In 32.7% (90 of 275) of polymicrogyria-affected families, genetic variants were identified that provided satisfactory molecular explanations. Known genes most frequently implicated by polymicrogyria-associated variants in this cohort were PIK3R2, TUBB2B, COL4A1, and SCN3A. Six candidate novel polymicrogyria genes were identified or confirmed: de novo missense variants in PANX1, QRICH1, and SCN2A and compound heterozygous variants in TMEM161B, KIF26A, and MAN2C1, each with consistent genotype-phenotype relationships in multiple families. Conclusions and Relevance: This study's findings reveal a higher than previously recognized rate of identifiable genetic causes, specifically of channelopathies, in individuals with polymicrogyria and support the utility of exome sequencing for families affected with polymicrogyria.


Subject(s)
Polymicrogyria , Humans , Polymicrogyria/diagnostic imaging , Polymicrogyria/genetics , Exome Sequencing , Retrospective Studies , Mutation, Missense , Siblings , Nerve Tissue Proteins/genetics , Connexins/genetics
10.
medRxiv ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38234731

ABSTRACT

Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generated single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. Seventy-five percent of elements (44 of 59) validated in an in vivo transgenic reporter assay, demonstrating that single cell accessibility is a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieved significant reduction in our variant search space and nominated candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as new candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work provides novel non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.

11.
J Clin Endocrinol Metab ; 107(8): 2228-2242, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35574646

ABSTRACT

CONTEXT: The genetic architecture of isolated hypogonadotropic hypogonadism (IHH) has not been completely defined. OBJECTIVE: To determine the role of copy number variants (CNVs) in IHH pathogenicity and define their phenotypic spectrum. METHODS: Exome sequencing (ES) data in IHH probands (n = 1394) (Kallmann syndrome [IHH with anosmia; KS], n = 706; normosmic IHH [nIHH], n = 688) and family members (n = 1092) at the Reproductive Endocrine Unit and the Center for Genomic Medicine of Massachusetts General Hospital were analyzed for CNVs and single nucleotide variants (SNVs)/indels in 62 known IHH genes. IHH subjects without SNVs/indels in known genes were considered "unsolved." Phenotypes associated with CNVs were evaluated through review of patient medical records. A total of 29 CNVs in 13 genes were detected (overall IHH cohort prevalence: ~2%). Almost all (28/29) CNVs occurred in unsolved IHH cases. While some genes (eg, ANOS1 and FGFR1) frequently harbor both CNVs and SNVs/indels, the mutational spectrum of others (eg, CHD7) was restricted to SNVs/indels. Syndromic phenotypes were seen in 83% and 63% of IHH subjects with multigenic and single gene CNVs, respectively. CONCLUSION: CNVs in known genes contribute to ~2% of IHH pathogenesis. Predictably, multigenic contiguous CNVs resulted in syndromic phenotypes. Syndromic phenotypes resulting from single gene CNVs validate pleiotropy of some IHH genes. Genome sequencing approaches are now needed to identify novel genes and/or other elusive variants (eg, noncoding/complex structural variants) that may explain the remaining missing etiology of IHH.


Subject(s)
Hypogonadism , Kallmann Syndrome , DNA Copy Number Variations , Humans , Hypogonadism/epidemiology , Hypogonadism/genetics , Kallmann Syndrome/genetics , Mutation , Phenotype , Prevalence
12.
Gut ; 70(2): 285-296, 2021 02.
Article in English | MEDLINE | ID: mdl-32651235

ABSTRACT

OBJECTIVE: Both the gut microbiome and host genetics are known to play significant roles in the pathogenesis of IBD. However, the interaction between these two factors and its implications in the aetiology of IBD remain underexplored. Here, we report on the influence of host genetics on the gut microbiome in IBD. DESIGN: To evaluate the impact of host genetics on the gut microbiota of patients with IBD, we combined whole exome sequencing of the host genome and whole genome shotgun sequencing of 1464 faecal samples from 525 patients with IBD and 939 population-based controls. We followed a four-step analysis: (1) exome-wide microbial quantitative trait loci (mbQTL) analyses, (2) a targeted approach focusing on IBD-associated genomic regions and protein truncating variants (PTVs, minor allele frequency (MAF) >5%), (3) gene-based burden tests on PTVs with MAF <5% and exome copy number variations (CNVs) with site frequency <1%, (4) joint analysis of both cohorts to identify the interactions between disease and host genetics. RESULTS: We identified 12 mbQTLs, including variants in the IBD-associated genes IL17REL, MYRF, SEC16A and WDR78. For example, the decrease of the pathway acetyl-coenzyme A biosynthesis, which is involved in short chain fatty acids production, was associated with variants in the gene MYRF (false discovery rate <0.05). Changes in functional pathways involved in the metabolic potential were also observed in participants carrying rare PTVs or CNVs in CYP2D6, GPR151 and CD160 genes. These genes are known for their function in the immune system. Moreover, interaction analyses confirmed previously known IBD disease-specific mbQTLs in TNFSF15. CONCLUSION: This study highlights that both common and rare genetic variants affecting the immune system are key factors in shaping the gut microbiota in the context of IBD and pinpoints towards potential mechanisms for disease treatment.


Subject(s)
Exome Sequencing , Gastrointestinal Microbiome/genetics , Genetic Predisposition to Disease/genetics , Inflammatory Bowel Diseases/etiology , Adaptor Proteins, Signal Transducing/genetics , Adult , Case-Control Studies , DNA Copy Number Variations/genetics , Female , Gene Frequency/genetics , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/microbiology , Male , Membrane Proteins/genetics , Metagenomics , Middle Aged , Quantitative Trait Loci/genetics , Receptors, Interleukin-17/genetics , Transcription Factors/genetics , Vesicular Transport Proteins/genetics
13.
Mol Biol Evol ; 37(8): 2241-2256, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32191304

ABSTRACT

Satellite DNAs (satDNAs) are among the most dynamically evolving components of eukaryotic genomes and play important roles in genome regulation, genome evolution, and speciation. Despite their abundance and functional impact, we know little about the evolutionary dynamics and molecular mechanisms that shape satDNA distributions in genomes. Here, we use high-quality genome assemblies to study the evolutionary dynamics of two complex satDNAs, Rsp-like and 1.688 g/cm3, in Drosophila melanogaster and its three nearest relatives in the simulans clade. We show that large blocks of these repeats are highly dynamic in the heterochromatin, where their genomic location varies across species. We discovered that small blocks of satDNA that are abundant in X chromosome euchromatin are similarly dynamic, with repeats changing in abundance, location, and composition among species. We detail the proliferation of a rare satellite (Rsp-like) across the X chromosome in D. simulans and D. mauritiana. Rsp-like spread by inserting into existing clusters of the older, more abundant 1.688 satellite, in events likely facilitated by microhomology-mediated repair pathways. We show that Rsp-like is abundant on extrachromosomal circular DNA in D. simulans, which may have contributed to its dynamic evolution. Intralocus satDNA expansions via unequal exchange and the movement of higher order repeats also contribute to the fluidity of the repeat landscape. We find evidence that euchromatic satDNA repeats experience cycles of proliferation and diversification somewhat analogous to bursts of transposable element proliferation. Our study lays a foundation for mechanistic studies of satDNA proliferation and the functional and evolutionary consequences of satDNA movement.


Subject(s)
DNA, Satellite/genetics , Drosophila melanogaster/genetics , Drosophila simulans/genetics , Evolution, Molecular , X Chromosome , Animals , Euchromatin
14.
Elife ; 72018 10 16.
Article in English | MEDLINE | ID: mdl-30324905

ABSTRACT

Fireflies and their luminous courtships have inspired centuries of scientific study. Today firefly luciferase is widely used in biotechnology, but the evolutionary origin of bioluminescence within beetles remains unclear. To shed light on this long-standing question, we sequenced the genomes of two firefly species that diverged over 100 million-years-ago: the North American Photinus pyralis and Japanese Aquatica lateralis. To compare bioluminescent origins, we also sequenced the genome of a related click beetle, the Caribbean Ignelater luminosus, with bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs, suggesting the intriguing hypothesis of parallel gains of bioluminescence. Our analyses support independent gains of bioluminescence in fireflies and click beetles, and provide new insights into the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle.


Subject(s)
Evolution, Molecular , Fireflies/genetics , Luciferases, Firefly/genetics , Luminescent Proteins/genetics , Animals , Coleoptera/enzymology , Coleoptera/genetics , Fireflies/enzymology , Genome, Insect/genetics , Molecular Sequence Annotation
15.
Physiol Meas ; 39(1): 015006, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29205172

ABSTRACT

OBJECTIVE: Blood flow waveforms-essential data for hemodynamic modeling-are often in practice unavailable to researchers. The objectives of this work were to assess the variability among the waveforms for a clinically relevant older population, and develop data-based methods for addressing the missing waveform data for hemodynamic studies. APPROACH: We analyzed 272 flow waveforms from the internal carotid arteries of older patients (73 ± 13 yr) with moderate cardiovascular disease, and used these data to develop methods to guide new approaches for hemodynamic studies. MAIN RESULTS: Profound variations in waveform parameters were found within the aged population that were not seen in published data for young subjects. Common features in the aged population relative to the young included a larger systole-to-diastole flow rate ratio, increased flow during late systole, and absence of a dicrotic notch. Eight waveforms were identified that collectively represent the range of waveforms in the older population. A relationship between waveform shape and flow rate was obtained that, in conjunction with equations relating flow rate to diameter, can be used to provide individualized waveforms for patient-specific geometries. The dependence of flow rate on diameter was statistically different between male and female patients. SIGNIFICANCE: It was shown that a single archetypal waveform cannot well-represent the diverse waveforms found within an aged population, although this approach is frequently used in studies of flow in the cerebral vasculature. Motivated by these results, we provided a set of eight waveforms that can be used to assess the hemodynamic uncertainty associated with the lack of patient-specific waveform data. We also provided a methodology for generating individualized waveforms when patient gender, age, and cardiovascular disease state are known. These data-driven approaches can be used to devise more relevant in vitro or in silico intra-cranial hemodynamic studies for older patients.


Subject(s)
Cerebral Arteries/physiology , Cerebrovascular Circulation , Aged , Aged, 80 and over , Cerebral Arteries/diagnostic imaging , Female , Humans , Male , Middle Aged , Software , Ultrasonography, Doppler
16.
PLoS One ; 10(7): e0131701, 2015.
Article in English | MEDLINE | ID: mdl-26146999

ABSTRACT

BACKGROUND: Many modern molecular diagnostic assays targeting nucleic acids are typically confined to developed countries or to the national reference laboratories of developing-world countries. The ability to make technologies for the rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a revolutionary step forward in global health. Many molecular assays are also developed based on polymerase chain reactions (PCR), which require thermal cyclers that are relatively heavy (>20 pounds) and need continuous electrical power. The temperature ramping speed of most economical thermal cyclers are relatively slow (2 to 3 °C/s) so a polymerase chain reaction can take 1 to 2 hours. Most of all, these thermal cyclers are still too expensive ($2k to $4k) for low-resource setting uses. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we demonstrate the development of a low-cost and rapid water bath based thermal cycler that does not require active temperature control or continuous power supply during PCR. This unit costs $130 to build using commercial off-the-shelf items. The use of two or three vacuum-insulated stainless-steel Thermos food jars containing heated water (for denaturation and annealing/extension steps) and a layer of oil on top of the water allow for significantly stabilized temperatures for PCR to take place. Using an Arduino-based microcontroller, we automate the "archaic" method of hand-transferring PCR tubes between water baths. CONCLUSIONS/SIGNIFICANCE: We demonstrate that this innovative unit can deliver high speed PCR (17 s per PCR cycle) with the potential to go beyond the 1,522 bp long amplicons tested in this study and can amplify from templates down to at least 20 copies per reaction. The unit also accepts regular PCR tubes and glass capillary tubes. The PCR efficiency of our thermal cycler is not different from other commercial thermal cyclers. When combined with a rapid nucleic acid detection approach, the thermos thermal cycler (TTC) can enable on-site molecular diagnostics in low-resource settings.


Subject(s)
Communicable Diseases/diagnosis , Costs and Cost Analysis , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Humans , Reverse Transcriptase Polymerase Chain Reaction/economics
17.
J Environ Qual ; 43(5): 1690-701, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25603255

ABSTRACT

Lake Winnipeg eutrophication results from excess nutrient loading due to agricultural activities across the watershed. Estimating nonpoint-source pollution and the mitigation effects of beneficial management practices (BMPs) is an important step in protecting the water quality of streams and receiving waters. The use of computer models to systematically compare different landscapes and agricultural systems across the Red-Assiniboine basin has not been attempted at watersheds of this size in Manitoba. In this study, the Soil and Water Assessment Tool was applied and calibrated for three pilot watersheds of the Lake Winnipeg basin. Monthly flow calibration yielded overall satisfactory Nash-Sutcliffe efficiency (NSE), with values above 0.7 for all simulations. Total phosphorus (TP) calibration NSE ranged from 0.64 to 0.76, total N (TN) ranged from 0.22 to 0.75, and total suspended solids (TSS) ranged from 0.29 to 0.68. Based on the assessment of the TP exceedance levels from 1993 to 2007, annual loads were above proposed objectives for the three watersheds more than half of the time. Four BMP scenarios based on land use changes were studied in the watersheds: annual cropland to hay land (ACHL), wetland restoration (WR), marginal annual cropland conversion to hay land (MACHL), and wetland restoration on marginal cropland (WRMAC). Of these land use change scenarios, ACHL had the greatest impact: TSS loads were reduced by 33 to 65%, TN by 58 to 82%, and TP by 38 to 72% over the simulation period. By analyzing unit area and percentage of load reduction, the results indicate that the WR and WRMAC scenarios had a significant impact on water quality in high loading zones in the three watersheds. Such reductions of sediment, N, and P are possible through land use change scenarios, suggesting that land conservation should be a key component of any Lake Winnipeg restoration strategy.

18.
Biochemistry ; 46(40): 11231-9, 2007 Oct 09.
Article in English | MEDLINE | ID: mdl-17845008

ABSTRACT

Integrase (IN) catalyzes insertion of the retroviral genome into the host via two sequential reactions. The processing activity cleaves the 3'-dinucleotides from the two ends of the viral DNA which are then inserted into the host DNA. Tetramers are required for the joining step. While dimers have been shown to catalyze processing, they do so inefficiently, and the oligomeric requirement for processing is unknown. We have replaced loop202-208 at the putative dimer-dimer interface of the avian sarcoma virus IN with its analogue, loop188-194, from human immunodeficiency virus IN. The mutation abolished disintegration activity and a 2 x 10(-2) s-1 fast phase during single-turnover processing. A 3 x 10(-4) s-1 slow processing phase was unaffected. Preincubation with a DNA substrate known to promote tetramerization increased products formed during the fast phase by 2.5-fold only for wild-type IN, correlating the fast and slow phases with processing by tetramers and dimers, respectively. We propose a novel tetramer model for coupling processing and integration based on efficient processing by the tetramer. We provide for the first time direct evidence of the functional relevance of a structural element, loop202-208, which appears to be required for mediating the interaction between dimer halves of the active tetramer.


Subject(s)
Avian Sarcoma Viruses/enzymology , Integrases/metabolism , Amino Acid Sequence , Avian Sarcoma Viruses/chemistry , Avian Sarcoma Viruses/genetics , Base Sequence , Dimerization , HIV Integrase/chemistry , HIV Integrase/genetics , HIV Integrase/metabolism , Integrases/chemistry , Integrases/genetics , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis , Protein Structure, Secondary , Structure-Activity Relationship , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
19.
Biochemistry ; 46(2): 379-86, 2007 Jan 16.
Article in English | MEDLINE | ID: mdl-17209548

ABSTRACT

The reaction mechanism of Yersinia pestis arginine decarboxylase has been investigated using a series of substrate, product, and inhibitors. Using single wavelength stopped-flow spectroscopy, novel mechanistic features were noted in the presence of the product, agmatine. By focusing on the excitation and emission wavelengths of the geminal diamine intermediate, we were able to monitor the formation and decay of two different geminal diamine species. Experiments revealed that the enzyme exists in two different conformational states--one that binds ligand and one that does not. The on and off rates for the conversion between the two conformational states was determined to be 390 s-1 and 880 s-1, respectively. The KD for agmatine binding was 6 mM. In addition, experiments revealed a pH-dependent conversion between two states of the enzyme. The deprotonated form of the enzyme binds ligand more slowly than the protonated form. The rates for the formation of the geminal diamine and external aldimine in this pathway were determined to be 25 and 4 s-1, respectively. There is also a slow interconversion between the protonated and deprotonated enzymes that has a pKa of approximately 8.0. Finally, the formation of the geminal diamine was determined to be Mg2+-dependent.


Subject(s)
Carboxy-Lyases/chemistry , Carboxy-Lyases/metabolism , Yersinia pestis/enzymology , Agmatine/chemistry , Agmatine/metabolism , Arginine/analogs & derivatives , Arginine/chemistry , Arginine/metabolism , Carboxy-Lyases/antagonists & inhibitors , Carboxy-Lyases/genetics , Catalytic Domain , Diamines/chemistry , Diamines/metabolism , Enzyme Inhibitors/pharmacology , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrophotometry , Substrate Specificity , Yersinia pestis/genetics
20.
J Biol Chem ; 281(31): 21607-21616, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-16731533

ABSTRACT

Replication protein A (RPA) is involved in multiple stages of DNA mismatch repair (MMR); however, the modulation of its functions between different stages is unknown. We show here that phosphorylation likely modulates RPA functions during MMR. Unphosphorylated RPA initially binds to nicked heteroduplex DNA to facilitate assembly of the MMR initiation complex. The unphosphorylated protein preferentially stimulates mismatch-provoked excision, possibly by cooperatively binding to the resultant single-stranded DNA gap. The DNA-bound RPA begins to be phosphorylated after extensive excision, resulting in severalfold reduction in the DNA binding affinity of RPA. Thus, during the phase of repair DNA synthesis, the phosphorylated RPA readily disassociates from DNA, making the DNA template available for DNA polymerase delta-catalyzed resynthesis. These observations support a model of how phosphorylation alters the DNA binding affinity of RPA to fulfill its differential requirement at the various stages of MMR.


Subject(s)
Base Pair Mismatch/genetics , DNA Repair , Replication Protein A/metabolism , Replication Protein A/physiology , DNA Polymerase III/metabolism , DNA, Circular/genetics , HeLa Cells , Humans , Phosphorylation , Protein Binding , Templates, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...