Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(8): e0255075, 2021.
Article in English | MEDLINE | ID: mdl-34375370

ABSTRACT

Induced endothelial cells (iECs) generated from neonatal fibroblasts via transdifferentiation have been shown to have pro-angiogenic properties and are a potential therapy for peripheral arterial disease (PAD). It is unknown if iECs can be generated from fibroblasts collected from PAD patients and whether these cells are pro-angiogenic. In this study fibroblasts were collected from four PAD patients undergoing carotid endarterectomies. These cells, and neonatal fibroblasts, were transdifferentiated into iECs using modified mRNA. Endothelial phenotype and pro-angiogenic cytokine secretion were investigated. NOD-SCID mice underwent surgery to induce hindlimb ischaemia in a murine model of PAD. Mice received intramuscular injections with either control vehicle, or 1 × 106 neonatal-derived or 1 × 106 patient-derived iECs. Recovery in perfusion to the affected limb was measured using laser Doppler scanning. Perfusion recovery was enhanced in mice treated with neonatal-derived iECs and in two of the three patient-derived iEC lines investigated in vivo. Patient-derived iECs can be successfully generated from PAD patients and for specific patients display comparable pro-angiogenic properties to neonatal-derived iECs.


Subject(s)
Endothelial Cells/pathology , Fibroblasts/pathology , Neovascularization, Physiologic , Peripheral Arterial Disease/pathology , Acetylation/drug effects , Animals , Capillaries/drug effects , Cell Line , Cell Movement/drug effects , Cell Transdifferentiation/drug effects , Collagen/pharmacology , Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Drug Combinations , Endothelial Cells/drug effects , Endothelial Cells/transplantation , Fibroblasts/drug effects , Hindlimb/blood supply , Hindlimb/pathology , Humans , Infant, Newborn , Intercellular Signaling Peptides and Proteins/pharmacology , Ischemia/pathology , Ischemia/therapy , Laminin/pharmacology , Lipoproteins, LDL/metabolism , Male , Mice, Inbred NOD , Mice, SCID , Neovascularization, Physiologic/drug effects , Perfusion , Plant Lectins/metabolism , Protein Binding/drug effects , Proteoglycans/pharmacology
2.
Int J Cardiol ; 234: 81-89, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28209385

ABSTRACT

BACKGROUND: Endothelial cells derived from human induced pluripotent stem cells (iPSC-ECs) promote angiogenesis, and more recently induced endothelial cells (iECs) have been generated via fibroblast trans-differentiation. These cell types have potential as treatments for peripheral arterial disease (PAD). However, it is unknown whether different reprogramming methods produce cells that are equivalent in terms of their pro-angiogenic capabilities. OBJECTIVES: We aimed to directly compare iPSC-ECs and iECs in an animal model of PAD, in order to identify which cell type, if any, displays superior therapeutic potential. METHODS: IPSC-ECs and iECs were generated from human fibroblasts, and transduced with a reporter construct encoding GFP and firefly luciferase for bioluminescence imaging (BLI). Endothelial phenotype was confirmed using in vitro assays. NOD-SCID mice underwent hindlimb ischaemia surgery and received an intramuscular injection of either 1×106 iPSC-ECs, 1×106 iECs or control vehicle only. Perfusion recovery was measured by laser Doppler. Hindlimb muscle samples were taken for histological analyses. RESULTS: Perfusion recovery was enhanced in iPSC-EC treated mice on day 14 (Control vs. iPSC-EC; 0.35±0.04 vs. 0.54±0.08, p<0.05) and in iEC treated mice on days 7 (Control vs. iEC; 0.23±0.02 vs. 0.44±0.06, p<0.05), 10 (0.31±0.04 vs. 0.64±0.07, p<0.001) and 14 (0.35±0.04 vs. 0.68±0.07, p<0.001) post-treatment. IEC-treated mice also had greater capillary density in the ischaemic gastrocnemius muscle (Control vs. iEC; 125±10 vs. 179±11 capillaries/image; p<0.05). BLI detected iPSC-EC and iEC presence in vivo for two weeks post-treatment. CONCLUSIONS: IPSC-ECs and iECs exhibit similar, but not identical, endothelial functionality and both cell types enhance perfusion recovery after hindlimb ischaemia.


Subject(s)
Cell Differentiation/physiology , Endothelial Cells/physiology , Ischemia , Peripheral Arterial Disease , Stem Cell Transplantation/methods , Animals , Cells, Cultured , Cellular Reprogramming/physiology , Disease Models, Animal , Fibroblasts/physiology , Hindlimb/blood supply , Humans , Induced Pluripotent Stem Cells/physiology , Ischemia/metabolism , Ischemia/therapy , Mice , Mice, Inbred NOD , Mice, SCID , Myocardial Perfusion Imaging/methods , Peripheral Arterial Disease/metabolism , Peripheral Arterial Disease/physiopathology , Peripheral Arterial Disease/therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...