Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 616(7958): 843-848, 2023 04.
Article in English | MEDLINE | ID: mdl-37076626

ABSTRACT

Structural maintenance of chromosomes (SMC) protein complexes are essential for the spatial organization of chromosomes1. Whereas cohesin and condensin organize chromosomes by extrusion of DNA loops, the molecular functions of the third eukaryotic SMC complex, Smc5/6, remain largely unknown2. Using single-molecule imaging, we show that Smc5/6 forms DNA loops by extrusion. Upon ATP hydrolysis, Smc5/6 reels DNA symmetrically into loops at a force-dependent rate of one kilobase pair per second. Smc5/6 extrudes loops in the form of dimers, whereas monomeric Smc5/6 unidirectionally translocates along DNA. We also find that the subunits Nse5 and Nse6 (Nse5/6) act as negative regulators of loop extrusion. Nse5/6 inhibits loop-extrusion initiation by hindering Smc5/6 dimerization but has no influence on ongoing loop extrusion. Our findings reveal functions of Smc5/6 at the molecular level and establish DNA loop extrusion as a conserved mechanism among eukaryotic SMC complexes.


Subject(s)
Cell Cycle Proteins , Chromosomes, Fungal , DNA, Fungal , Saccharomyces cerevisiae , Adenosine Triphosphate/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone , Chromosomes, Fungal/chemistry , Chromosomes, Fungal/metabolism , DNA, Fungal/chemistry , DNA, Fungal/metabolism , Hydrolysis , Multiprotein Complexes , Single Molecule Imaging , Cohesins
2.
Autophagy ; 16(3): 575-583, 2020 03.
Article in English | MEDLINE | ID: mdl-31276439

ABSTRACT

Macroautophagy/autophagy is an essential process for the maintenance of cellular homeostasis by recycling macromolecules under normal and stress conditions. ATG9 (autophagy related 9) is the only integral membrane protein in the autophagy core machinery and has a central role in mediating autophagosome formation. In cells, ATG9 exists on mobile vesicles that traffic to the growing phagophore, providing an essential membrane source for the formation of autophagosomes. Here we report the three-dimensional structure of ATG9 from Arabidopsis thaliana at 7.8 Å resolution, determined by single particle cryo-electron microscopy. ATG9 organizes into a homotrimer, with each protomer contributing at least six transmembrane α-helices. At the center of the trimer, the protomers interact via their membrane-embedded and C-terminal cytoplasmic regions. Combined with prediction of protein contacts using sequence co-evolutionary information, the structure provides molecular insights into the ATG9 architecture and testable hypotheses for the molecular mechanism of autophagy progression regulated by ATG9.Abbreviations: 2D: 2-dimensional; 3D: 3-dimensional; AtATG9: Arabidopsis ATG9; Atg: autophagy-related; ATG9: autophagy-related protein 9; cryo-EM: cryo-electron microscopy; DDM: dodecyl maltoside; GraDeR: gradient-based detergent removal; LMNG: lauryl maltose-neopentyl glycol; PAS: phagophore assembly site; PtdIns3K: phosphatidylinositol 3-kinase.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Autophagy-Related Proteins/metabolism , Cryoelectron Microscopy , Membrane Proteins/metabolism , Nanotechnology , Arabidopsis Proteins/ultrastructure , Autophagy-Related Proteins/ultrastructure , Membrane Proteins/ultrastructure , Models, Molecular , Protein Multimerization , Protein Structure, Secondary , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...