Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Radiother Oncol ; 196: 110287, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636709

ABSTRACT

BACKGROUND: Locally advanced nasopharyngeal cancer (NPC) patients undergoing radiotherapy are at risk of treatment failure, particularly locoregional recurrence. To optimize the individual radiation dose, we hypothesize that the genomic adjusted radiation dose (GARD) can be used to correlate with locoregional control. METHODS: A total of 92 patients with American Joint Committee on Cancer / International Union Against Cancer stage III to stage IVB recruited in a randomized phase III trial were assessed (NPC-0501) (NCT00379262). Patients were treated with concurrent chemo-radiotherapy plus (neo) adjuvant chemotherapy. The primary endpoint is locoregional failure free rate (LRFFR). RESULTS: Despite the homogenous physical radiation dose prescribed (Median: 70 Gy, range 66-76 Gy), there was a wide range of GARD values (median: 50.7, range 31.1-67.8) in this cohort. In multivariable analysis, a GARD threshold (GARDT) of 45 was independently associated with LRFFR (p = 0.008). By evaluating the physical dose required to achieve the GARDT (RxRSI), three distinct clinical subgroups were identified: (1) radiosensitive tumors that RxRSI at dose < 66 Gy (N = 59, 64.1 %) (b) moderately radiosensitive tumors that RxRSI dose within the current standard of care range (66-74 Gy) (N = 20, 21.7 %), (c) radioresistant tumors that need a significant dose escalation above the current standard of care (>74 Gy) (N = 13, 14.1 %). CONCLUSION: GARD is independently associated with locoregional control in radiotherapy-treated NPC patients from a Phase 3 clinical trial. GARD may be a potential framework to personalize radiotherapy dose for NPC patients.


Subject(s)
Nasopharyngeal Neoplasms , Radiotherapy Dosage , Humans , Male , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Female , Middle Aged , Adult , Aged , Precision Medicine , Chemoradiotherapy/methods , Neoplasm Staging , Genomics , Neoplasm Recurrence, Local
2.
Cancer Imaging ; 24(1): 42, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520026

ABSTRACT

BACKGROUND: Positron Emission Tomography (PET) with combined [18F]-FDG and [11C]-acetate (dual-tracer) is used for the management of hepatocellular carcinoma (HCC) patients, although its prognostic value and underlying molecular mechanism remain poorly understood. We hypothesized that radiotracer uptake might be associated with tumor hypoxia and validated our findings in public and local human HCC cohorts. METHODS: Twelve orthotopic HCC xenografts were established using MHCC97L cells in female nude mice, with 5 having undergone hepatic artery ligation (HAL) to create tumor hypoxia in vivo. Tumors in both Control and HAL-treated xenografts were imaged with [11C]-acetate and [18F]-FDG PET-MR and RNA sequencing was performed on the resected tumors. Semiquantitative analysis of PET findings was then performed, and the findings were then validated on the Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort and patients from our institution. RESULTS: HAL-treated mice showed lower [11C]-acetate (HAL-treated vs. Control, tumor-to-liver SUV ratio (SUVTLR): 2.14[2.05-2.21] vs 3.11[2.75-5.43], p = 0.02) but not [18F]-FDG (HAL-treated vs. Control, SUVTLR: 3.73[3.12-4.35] vs 3.86[3.7-5.29], p = 0.83) tumor uptakes. Gene expression analysis showed the PET phenotype is associated with upregulation of hallmark hypoxia signature. The prognostic value of the hypoxia gene signature was tested on the TCGA-LIHC cohort with upregulation of hypoxia gene signature associated with poorer overall survival (OS) in late-stage (stage III and IV) HCC patients (n = 66, OS 2.05 vs 1.67 years, p = 0.046). Using a local cohort of late-stage HCC patients who underwent dual-tracer PET-CT, tumors without [11C]-acetate uptake are associated with poorer prognosis (n = 51, OS 0.25 versus 1.21 years, p < 0.0001) and multivariable analyses showed [11C]-acetate tumor uptake as an independent predictor of OS (HR 0.17 95%C 0.06-0.42, p < 0.0001). CONCLUSIONS: [11C]-acetate uptake is associated with alteration of tumor hypoxia gene expression and poorer prognosis in patients with advanced HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Female , Animals , Mice , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/genetics , Prognosis , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography/methods , Mice, Nude , Radiopharmaceuticals , Positron-Emission Tomography , Acetates , Gene Expression
3.
JCO Precis Oncol ; 7: e2200649, 2023 06.
Article in English | MEDLINE | ID: mdl-37315266

ABSTRACT

BACKGROUND: Next-generation sequencing comprehensive genomic panels (NGS CGPs) have enabled the delivery of tailor-made therapeutic approaches to improve survival outcomes in patients with cancer. Within the China Greater Bay Area (GBA), territorial differences in clinical practices and health care systems and strengthening collaboration warrant a regional consensus to consolidate the development and integration of precision oncology (PO). Therefore, the Precision Oncology Working Group (POWG) formulated standardized principles for the clinical application of molecular profiling, interpretation of genomic alterations, and alignment of actionable mutations with sequence-directed therapy to deliver clinical services of excellence and evidence-based care to patients with cancer in the China GBA. METHODS: Thirty experts used a modified Delphi method. The evidence extracted to support the statements was graded according to the GRADE system and reported according to the Revised Standards for Quality Improvement Reporting Excellence guidelines, version 2.0. RESULTS: The POWG reached consensus in six key statements: harmonization of reporting and quality assurance of NGS; molecular tumor board and clinical decision support systems for PO; education and training; research and real-world data collection, patient engagement, regulations, and financial reimbursement of PO treatment strategies; and clinical recommendations and implementation of PO in clinical practice. CONCLUSION: POWG consensus statements standardize the clinical application of NGS CGPs, streamline the interpretation of clinically significant genomic alterations, and align actionable mutations with sequence-directed therapies. The POWG consensus statements may harmonize the utility and delivery of PO in China's GBA.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Medical Oncology , Genomics , China
4.
Science ; 379(6633): 717-723, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36795828

ABSTRACT

Methylation of histone H3 lysine-79 (H3K79) is an epigenetic mark for gene regulation in development, cellular differentiation, and disease progression. However, how this histone mark is translated into downstream effects remains poorly understood owing to a lack of knowledge about its readers. We developed a nucleosome-based photoaffinity probe to capture proteins that recognize H3K79 dimethylation (H3K79me2) in a nucleosomal context. In combination with a quantitative proteomics approach, this probe identified menin as a H3K79me2 reader. A cryo-electron microscopy structure of menin bound to an H3K79me2 nucleosome revealed that menin engages with the nucleosome using its fingers and palm domains and recognizes the methylation mark through a π-cation interaction. In cells, menin is selectively associated with H3K79me2 on chromatin, particularly in gene bodies.


Subject(s)
Epigenesis, Genetic , Histones , Lysine , Nucleosomes , Proto-Oncogene Proteins , Chromatin/metabolism , Cryoelectron Microscopy , Histones/chemistry , Histones/metabolism , Methylation , Nucleosomes/chemistry , Nucleosomes/metabolism , Lysine/metabolism , Proteomics/methods , Proto-Oncogene Proteins/metabolism , Humans , Animals , Molecular Probes/chemistry , Protein Processing, Post-Translational
5.
Microbiome ; 10(1): 187, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36329549

ABSTRACT

BACKGROUND: Gut microbiota (GM) dysregulation, known as dysbiosis, has been proposed as a crucial driver of obesity associated with "Western" diet (WD) consumption. Gut dysbiosis is associated with increased gut permeability, inflammation, and insulin resistance. However, host metabolic pathways implicated in the pathophysiology of gut dysbiosis are still elusive. Exchange protein directly activated by cAMP (Epac) plays a critical role in cell-cell junction formation and insulin secretion. Here, we used homozygous Epac1-knockout (Epac1-/-), Epac2-knockout (Epac2-/-), and wild-type (WT) mice to investigate the role of Epac proteins in mediating gut dysbiosis, gut permeability, and inflammation after WD feeding. RESULTS: The 16S rRNA gene sequencing of fecal DNA showed that the baseline GM of Epac2-/-, but not Epac1-/-, mice was represented by a significantly higher Firmicutes to Bacteroidetes ratio and significant alterations in several taxa compared to WT mice, suggesting that Epac2-/- mice had gut dysbiosis under physiological conditions. However, an 8-week WD led to a similar gut microbiome imbalance in mice regardless of genotype. While Epac1 deficiency modestly exacerbated the WD-induced GM dysbiosis, the WD-fed Epac2-/- mice had a more significant increase in gut permeability than corresponding WT mice. After WD feeding, Epac1-/-, but not Epac2-/-, mice had significantly higher mRNA levels of tumor necrosis factor-alpha (TNF-α) and F4/80 in the epididymal white adipose tissue (EWAT), increased circulating lipocalin-2 protein and more severe glucose intolerance, suggesting greater inflammation and insulin resistance in WD-fed Epac1-/- mice than corresponding WT mice. Consistently, Epac1 protein expression was significantly reduced in the EWAT of WD-fed WT and Epac2-/- mice. CONCLUSION: Despite significantly dysregulated baseline GM and a more pronounced increase in gut permeability upon WD feeding, WD-fed Epac2-/- mice did not exhibit more severe inflammation and glucose intolerance than corresponding WT mice. These findings suggest that the role of gut dysbiosis in mediating WD-associated obesity may be context-dependent. On the contrary, we demonstrate that deficiency of host signaling protein, Epac1, drives inflammation and glucose intolerance which are the hallmarks of WD-induced obesity. Video abstract.


Subject(s)
Glucose Intolerance , Insulin Resistance , Animals , Mice , Diet, Western , Dysbiosis , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Inflammation , Mice, Inbred C57BL , Obesity/etiology , RNA, Ribosomal, 16S/genetics
6.
Mol Cell ; 76(4): 660-675.e9, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31542297

ABSTRACT

Histone posttranslational modifications (PTMs) regulate chromatin structure and dynamics during various DNA-associated processes. Here, we report that lysine glutarylation (Kglu) occurs at 27 lysine residues on human core histones. Using semi-synthetic glutarylated histones, we show that an evolutionarily conserved Kglu at histone H4K91 destabilizes nucleosome in vitro. In Saccharomyces cerevisiae, the replacement of H4K91 by glutamate that mimics Kglu influences chromatin structure and thereby results in a global upregulation of transcription and defects in cell-cycle progression, DNA damage repair, and telomere silencing. In mammalian cells, H4K91glu is mainly enriched at promoter regions of highly expressed genes. A downregulation of H4K91glu is tightly associated with chromatin condensation during mitosis and in response to DNA damage. The cellular dynamics of H4K91glu is controlled by Sirt7 as a deglutarylase and KAT2A as a glutaryltransferase. This study designates a new histone mark (Kglu) as a new regulatory mechanism for chromatin dynamics.


Subject(s)
Chromatin Assembly and Disassembly , DNA Damage , Glutarates/metabolism , Histones/metabolism , Mitosis , Nucleosomes/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Animals , HEK293 Cells , HL-60 Cells , HeLa Cells , Hep G2 Cells , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , Lysine , Mice , Nucleosomes/genetics , RAW 264.7 Cells , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Sirtuins/genetics , Sirtuins/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...