Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Today Bio ; 22: 100727, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37529421

ABSTRACT

Mesenchymal stem cells (MSCs) used for clinical applications require in vitro expansion to achieve therapeutically relevant numbers. However, conventional planar cell expansion approaches using tissue culture vessels are inefficient, costly, and can trigger MSC phenotypic and functional decline. Here we present a one-step dry plasma process to modify the internal surfaces of three-dimensional (3D) printed, high surface area to volume ratio (high-SA:V) porous scaffolds as platforms for stem cell expansion. To address the long-lasting challenge of uniform plasma treatment within the micrometre-sized pores of scaffolds, we developed a packed bed plasma immersion ion implantation (PBPI3) technology by which plasma is ignited inside porous materials for homogeneous surface activation. COMSOL Multiphysics simulations support our experimental data and provide insights into the role of electrical field and pressure distribution in plasma ignition. Spatial surface characterisation inside scaffolds demonstrates the homogeneity of PBPI3 activation. The PBPI3 treatment induces radical-containing chemical structures that enable the covalent attachment of biomolecules via a simple, non-toxic, single-step incubation process. We showed that PBPI3-treated scaffolds biofunctionalised with fibroblast growth factor 2 (FGF2) significantly promoted the expansion of MSCs, preserved cell phenotypic expression, and multipotency, while reducing the usage of costly growth factor supplements. This breakthrough PBPI3 technology can be applied to a wide range of 3D polymeric porous scaffolds, paving the way towards developing new biomimetic interfaces for tissue engineering and regenerative medicine.

2.
Biomater Sci ; 11(14): 4752-4773, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37233031

ABSTRACT

Research has advanced considerably since the first clinical trial of human mesenchymal stem cells (MSCs) in the early 1990s. During this period, our understanding of MSC biology and our ability to expand and manipulate these cells have provided hope for the repair of damaged tissues due to illness or injury. MSCs have conventionally been injected systemically or locally into target tissue; however, inconsistent cell homing and engraftment efficiencies represent a major bottleneck that has led to mixed results in clinical studies. To overcome these issues, MSCs have been pre-conditioned with biomolecules, genetically altered, or surface engineered to enhance their homing and engraftment capabilities. In parallel, a variety of cell-encapsulating materials have been designed to improve cell delivery and post-transplantation survival and function. In this review, we discuss the current strategies that have been employed on cultured MSCs to improve targeted cell delivery and retention for tissue repair. We also discuss the advances in injectable and implantable biomaterial technologies that drive the success of MSC-based therapies in regenerative medicine. Multi-faceted approaches combining cellular modification and cell-instructive material design can pave the way for efficient and robust stem cell transplantation for superior therapeutic outcomes.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cell Transplantation/methods , Biocompatible Materials/metabolism , Regenerative Medicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...