Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 12: 970242, 2022.
Article in English | MEDLINE | ID: mdl-36248993

ABSTRACT

Advances in Next Generation Sequencing (NGS) technologies have enabled the accurate detection and quantification of circulating tumor-derived (ct)DNA in most gastrointestinal (GI) cancers. The prognostic and predictive utility of ctDNA in patiets with different stages of colorectal (CRC), gastro-esophageal (GEC) and pancreaticobiliary cancers (PBC) are currently under active investigation. The most mature clinical data to date are derived from studies in the prognostic utility of personalized ctDNA-based NGS assays in the detection of minimal residual disease (MRD) and early recurrence after surgery in CRC and other GI cancers. These findings are being validated in several prospective studies which are designed to test if ctDNA could outperform conventional approaches in guiding adjuvant chemotherapy, and in post-operative surveillance in some GI cancers. Several adaptive studies using ctDNA as a screening platform are also being used to identify patients with actionable genomic alterations for clinical trials of targeted therapies. In the palliative setting, ctDNA monitoring during treatment has shown promise in the detection and tracking of clonal variants associated with acquired resistance to targeted therapies and immune-checkpoint inhibitors (ICI). Moreover, ctDNA may help to guide the therapeutic re-challenge of targeted therapies in patients who have prior exposure to such treatment. This review will examine the most updated research findings on ctDNA as a biomarker in CRC, GEC and PBCs. It aims to provide insights into how the unique strengths of this biomarker could be optimally leveraged in improving the management of these GI cancers.

2.
Proc Natl Acad Sci U S A ; 117(51): 32464-32475, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33293420

ABSTRACT

Epigenetics regulation plays a critical role in determining cell identity by controlling the accessibility of lineage-specific regulatory regions. In muscle stem cells, epigenetic mechanisms of how chromatin accessibility is modulated during cell fate determination are not fully understood. Here, we identified a long noncoding RNA, LncMyoD, that functions as a chromatin modulator for myogenic lineage determination and progression. The depletion of LncMyoD in muscle stem cells led to the down-regulation of myogenic genes and defects in myogenic differentiation. LncMyoD exclusively binds with MyoD and not with other myogenic regulatory factors and promotes transactivation of target genes. The mechanistic study revealed that loss of LncMyoD prevents the establishment of a permissive chromatin environment at myogenic E-box-containing regions, therefore restricting the binding of MyoD. Furthermore, the depletion of LncMyoD strongly impairs the reprogramming of fibroblasts into the myogenic lineage. Taken together, our study shows that LncMyoD associates with MyoD and promotes myogenic gene expression through modulating MyoD accessibility to chromatin, thereby regulating myogenic lineage determination and progression.


Subject(s)
Chromatin/genetics , RNA, Long Noncoding/genetics , Satellite Cells, Skeletal Muscle/physiology , Animals , Cell Differentiation/genetics , Cell Lineage , Cell Transdifferentiation , Chromatin/metabolism , Female , Fibroblasts/cytology , Fibroblasts/physiology , Gene Expression Regulation, Developmental , Male , Mice, Inbred C57BL , Muscle Development/physiology , MyoD Protein/genetics , Myoblasts/cytology , Myoblasts/physiology , Satellite Cells, Skeletal Muscle/cytology
3.
Wound Repair Regen ; 17(5): 717-29, 2009.
Article in English | MEDLINE | ID: mdl-19769724

ABSTRACT

Scar formation is a common, unwanted result of wound healing in skin, but the mechanisms that regulate it are still largely unknown. Interestingly, wound healing in the oral mucosa proceeds faster than in skin and clinical observations have suggested that mucosal wounds rarely scar. To test this concept, we created identical experimental wounds in the oral mucosa and skin in red Duroc pigs and compared wound healing and scar development over time. We also compared the pig oral mucosal wound healing to similar experimental wounds created in human subjects. The findings showed significantly reduced scar formation at both clinical and histological level in the pig oral mucosa as compared with skin 49 days after wounding. Additionally, the skin scars contained a significantly increased number of type I procollagen immunopositive cells and an increased fibronectin content, while the oral mucosal wounds demonstrated a prolonged accumulation of tenascin-C. Furthermore, the pig oral mucosal wounds showed similar molecular composition and clinical and histological scar scores to human oral mucosal wounds. Thus, the reduced scar formation in the pig oral mucosa provides a model to study the biological processes that regulate scarless wound healing to find novel approaches to prevent scar formation in skin.


Subject(s)
Cicatrix/physiopathology , Disease Models, Animal , Mouth Mucosa/physiopathology , Regeneration/physiology , Skin/physiopathology , Swine , Wound Healing/physiology , Adult , Aged , Animals , Female , Humans , Male , Middle Aged , Mouth Mucosa/injuries , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...