Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 174: 35-43, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29486321

ABSTRACT

Oxytocin (OT) is an endogenous neuropeptide that, while originally thought to promote trust, has more recently been found to be context-dependent. Here we extend experimental paradigms previously restricted to de novo decision-to-trust, to a more realistic environment in which social relationships evolve in response to iterative feedback over twenty interactions. In a randomized, double blind, placebo-controlled within-subject/crossover experiment of human adult males, we investigated the effects of a single dose of intranasal OT (40 IU) on Bayesian expectation updating and reinforcement learning within a social context, with associated brain circuit dynamics. Subjects participated in a neuroeconomic task (Iterative Trust Game) designed to probe iterative social learning while their brains were scanned using ultra-high field (7T) fMRI. We modeled each subject's behavior using Bayesian updating of belief-states ("willingness to trust") as well as canonical measures of reinforcement learning (learning rate, inverse temperature). Behavioral trajectories were then used as regressors within fMRI activation and connectivity analyses to identify corresponding brain network functionality affected by OT. Behaviorally, OT reduced feedback learning, without bias with respect to positive versus negative reward. Neurobiologically, reduced learning under OT was associated with muted communication between three key nodes within the reward circuit: the orbitofrontal cortex, amygdala, and lateral (limbic) habenula. Our data suggest that OT, rather than inspiring feelings of generosity, instead attenuates the brain's encoding of prediction error and therefore its ability to modulate pre-existing beliefs. This effect may underlie OT's putative role in promoting what has typically been reported as 'unjustified trust' in the face of information that suggests likely betrayal, while also resolving apparent contradictions with regard to OT's context-dependent behavioral effects.


Subject(s)
Brain/physiology , Interpersonal Relations , Oxytocin/physiology , Reinforcement, Psychology , Reward , Trust , Administration, Intranasal , Adult , Brain Mapping , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/physiology , Oxytocin/administration & dosage , Young Adult
2.
Anesthesiology ; 115(4): 791-803, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21934407

ABSTRACT

BACKGROUND: Although accumulating evidence suggests that arousal pathways in the brain play important roles in emergence from general anesthesia, the roles of monoaminergic arousal circuits are unclear. In this study, the authors tested the hypothesis that methylphenidate (an inhibitor of dopamine and norepinephrine transporters) induces emergence from isoflurane general anesthesia. METHODS: Using adult rats, the authors tested the effect of intravenous methylphenidate on time to emergence from isoflurane general anesthesia. They then performed experiments to test separately for methylphenidate-induced changes in arousal and changes in minute ventilation. A dose-response study was performed to test for methylphenidate-induced restoration of righting during continuous isoflurane general anesthesia. Surface electroencephalogram recordings were performed to observe neurophysiological changes. Plethysmography recordings and arterial blood gas analysis were performed to assess methylphenidate-induced changes in respiratory function. Intravenous droperidol was administered to test for inhibition of methylphenidate's actions. RESULTS: Methylphenidate decreased median time to emergence from 280 to 91 s. The median difference in time to emergence without methylphenidate compared with administration of methylphenidate was 200 [155-331] s (median, [95% CI]). During continuous inhalation of isoflurane, methylphenidate induced return of righting in a dose-dependent manner, induced a shift in electroencephalogram power from delta (less than 4 Hz) to theta (4-8 Hz), and induced an increase in minute ventilation. Administration of intravenous droperidol (0.5 mg/kg) before intravenous methylphenidate (5 mg/kg) largely inhibited methylphenidate-induced emergence behavior, electroencephalogram changes, and changes in minute ventilation. CONCLUSIONS: Methylphenidate actively induces emergence from isoflurane general anesthesia by increasing arousal and respiratory drive, possibly through activation of dopaminergic and adrenergic arousal circuits. The authors' findings suggest that methylphenidate may be useful clinically as an agent to reverse general anesthetic-induced unconsciousness and respiratory depression at the end of surgery.


Subject(s)
Anesthesia Recovery Period , Anesthesia, General , Central Nervous System Stimulants/pharmacology , Methylphenidate/pharmacology , Adjuvants, Anesthesia/pharmacology , Algorithms , Alkalosis, Respiratory/blood , Alkalosis, Respiratory/chemically induced , Anesthetics, Inhalation , Animals , Arousal/drug effects , Blood Gas Analysis , Blood Pressure/drug effects , Droperidol/pharmacology , Electroencephalography/drug effects , Heart Rate/drug effects , Hemodynamics/drug effects , Isoflurane , Male , Plethysmography , Postural Balance/drug effects , Rats , Rats, Sprague-Dawley , Respiratory Mechanics/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...