Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biomed Eng ; 3(2): 137-146, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30911429

ABSTRACT

How common polymorphisms in noncoding genome regions can regulate cellular function remains largely unknown. Here we show that cardiac fibrosis, mimicked using a hydrogel with controllable stiffness, affects the regulation of the phenotypes of human cardiomyocytes by a portion of the long noncoding RNA ANRIL, the gene of which is located in the disease-associated 9p21 locus. In a physiological environment, cultured cardiomyocytes derived from induced pluripotent stem cells obtained from patients who are homozygous for cardiovascular-risk alleles (R/R cardiomyocytes) or from healthy individuals who are homozygous for nonrisk alleles contracted synchronously, independently of genotype. After hydrogel stiffening to mimic fibrosis, only the R/R cardiomyocytes exhibited asynchronous contractions. These effects were associated with increased expression of the short ANRIL isoform in R/R cardiomyocytes, which induced a c-Jun N-terminal kinase (JNK) phosphorylation-based mechanism that impaired gap junctions (particularly, loss of connexin-43 expression) following stiffening. Deletion of the risk locus or treatment with a JNK antagonist was sufficient to maintain gap junctions and prevent asynchronous contraction of cardiomyocytes. Our findings suggest that mechanical changes in the microenvironment of cardiomyocytes can activate the regulation of their function by noncoding loci.

2.
Proc Natl Acad Sci U S A ; 116(9): 3502-3507, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30755531

ABSTRACT

Breast cancer development is associated with increasing tissue stiffness over years. To more accurately mimic the onset of gradual matrix stiffening, which is not feasible with conventional static hydrogels, mammary epithelial cells (MECs) were cultured on methacrylated hyaluronic acid hydrogels whose stiffness can be dynamically modulated from "normal" (<150 Pascals) to "malignant" (>3,000 Pascals) via two-stage polymerization. MECs form and remain as spheroids, but begin to lose epithelial characteristics and gain mesenchymal morphology upon matrix stiffening. However, both the degree of matrix stiffening and culture time before stiffening play important roles in regulating this conversion as, in both cases, a subset of mammary spheroids remained insensitive to local matrix stiffness. This conversion depended neither on colony size nor cell density, and MECs did not exhibit "memory" of prior niche when serially cultured through cycles of compliant and stiff matrices. Instead, the transcription factor Twist1, transforming growth factor ß (TGFß), and YAP activation appeared to modulate stiffness-mediated signaling; when stiffness-mediated signals were blocked, collective MEC phenotypes were reduced in favor of single MECs migrating away from spheroids. These data indicate a more complex interplay of time-dependent stiffness signaling, spheroid structure, and soluble cues that regulates MEC plasticity than suggested by previous models.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Breast Neoplasms/genetics , Mechanotransduction, Cellular/genetics , Phosphoproteins/genetics , Transforming Growth Factor beta/genetics , Twist-Related Protein 1/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Hydrogels/chemistry , Paracrine Communication/genetics , Signal Transduction/genetics , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Transcription Factors , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...