Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38894364

ABSTRACT

Transfer learning (TL) techniques have proven useful in a wide variety of applications traditionally dominated by machine learning (ML), such as natural language processing, computer vision, and computer-aided design. Recent extrapolations of TL to the radio frequency (RF) domain are being used to increase the potential applicability of RFML algorithms, seeking to improve the portability of models for spectrum situational awareness and transmission source identification. Unlike most of the computer vision and natural language processing applications of TL, applications within the RF modality must contend with inherent hardware distortions and channel condition variations. This paper seeks to evaluate the feasibility and performance trade-offs when transferring learned behaviors from functional RFML classification algorithms, specifically those designed for automatic modulation classification (AMC) and specific emitter identification (SEI), between homogeneous radios of similar construction and quality and heterogeneous radios of different construction and quality. Results derived from both synthetic data and over-the-air experimental collection show promising performance benefits from the application of TL to the RFML algorithms of SEI and AMC.

2.
Sensors (Basel) ; 22(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35214317

ABSTRACT

Transfer learning is a pervasive technology in computer vision and natural language processing fields, yielding exponential performance improvements by leveraging prior knowledge gained from data with different distributions. However, while recent works seek to mature machine learning and deep learning techniques in applications related to wireless communications, a field loosely termed radio frequency machine learning, few have demonstrated the use of transfer learning techniques for yielding performance gains, improved generalization, or to address concerns of training data costs. With modifications to existing transfer learning taxonomies constructed to support transfer learning in other modalities, this paper presents a tailored taxonomy for radio frequency applications, yielding a consistent framework that can be used to compare and contrast existing and future works. This work offers such a taxonomy, discusses the small body of existing works in transfer learning for radio frequency machine learning, and outlines directions where future research is needed to mature the field.


Subject(s)
Machine Learning , Natural Language Processing , Radio Waves , Surveys and Questionnaires , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...