Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36361698

ABSTRACT

The heart is metabolically flexible. Under physiological conditions, it mainly uses lipids and glucose as energy substrates. In uncontrolled diabetes, the heart switches towards predominant lipid utilization, which over time is detrimental to cardiac function. Additionally, diabetes is accompanied by high plasma ketone levels and increased utilization of energy provision. The administration of exogenous ketones is currently being investigated for the treatment of cardiovascular disease. Yet, it remains unclear whether increased cardiac ketone utilization is beneficial or detrimental to cardiac functioning. The mechanism of lipid-induced cardiac dysfunction includes disassembly of the endosomal proton pump (named vacuolar-type H+-ATPase; v-ATPase) as the main early onset event, followed by endosomal de-acidification/dysfunction. The de-acidified endosomes can no longer serve as a storage compartment for lipid transporter CD36, which then translocates to the sarcolemma to induce lipid accumulation, insulin resistance, and contractile dysfunction. Lipid-induced v-ATPase disassembly is counteracted by the supply of specific amino acids. Here, we tested the effect of ketone bodies on v-ATPase assembly status and regulation of lipid uptake in rodent/human cardiomyocytes. 3-ß-hydroxybutyrate (3HB) exposure induced v-ATPase disassembly and the entire cascade of events leading to contractile dysfunction and insulin resistance, similar to conditions of lipid oversupply. Acetoacetate addition did not induce v-ATPase dysfunction. The negative effects of 3HB could be prevented by addition of specific amino acids. Hence, in sedentary/prediabetic subjects ketone bodies should be used with caution because of possible aggravation of cardiac insulin resistance and further loss of cardiac function. When these latter maladaptive conditions would occur, specific amino acids could potentially be a treatment option.


Subject(s)
Diabetes Mellitus , Insulin Resistance , Vacuolar Proton-Translocating ATPases , Humans , Myocytes, Cardiac/metabolism , Insulin Resistance/physiology , Vacuolar Proton-Translocating ATPases/metabolism , Ketone Bodies/metabolism , 3-Hydroxybutyric Acid/pharmacology , Diabetes Mellitus/metabolism , Amino Acids/metabolism , Dietary Supplements
2.
Mol Metab ; 53: 101293, 2021 11.
Article in English | MEDLINE | ID: mdl-34265467

ABSTRACT

OBJECTIVE: The diabetic heart is characterized by extensive lipid accumulation which often leads to cardiac contractile dysfunction. The underlying mechanism involves a pivotal role for vacuolar-type H+-ATPase (v-ATPase, functioning as endosomal/lysosomal proton pump). Specifically, lipid oversupply to the heart causes disassembly of v-ATPase and endosomal deacidification. Endosomes are storage compartments for lipid transporter CD36. However, upon endosomal deacidification, CD36 is expelled to translocate to the sarcolemma, thereby inducing myocardial lipid accumulation, insulin resistance, and contractile dysfunction. Hence, the v-ATPase assembly may be a suitable target for ameliorating diabetic cardiomyopathy. Another function of v-ATPase involves the binding of anabolic master-regulator mTORC1 to endosomes, a prerequisite for the activation of mTORC1 by amino acids (AAs). We examined whether the relationship between v-ATPase and mTORC1 also operates reciprocally; specifically, whether AA induces v-ATPase reassembly in a mTORC1-dependent manner to prevent excess lipids from entering and damaging the heart. METHODS: Lipid overexposed rodent/human cardiomyocytes and high-fat diet-fed rats were treated with a specific cocktail of AAs (lysine/leucine/arginine). Then, v-ATPase assembly status/activity, cell surface CD36 content, myocellular lipid uptake/accumulation, insulin sensitivity, and contractile function were measured. To elucidate underlying mechanisms, specific gene knockdown was employed, followed by subcellular fractionation, and coimmunoprecipitation. RESULTS: In lipid-overexposed cardiomyocytes, lysine/leucine/arginine reinternalized CD36 to the endosomes, prevented/reversed lipid accumulation, preserved/restored insulin sensitivity, and contractile function. These beneficial AA actions required the mTORC1-v-ATPase axis, adaptor protein Ragulator, and endosomal/lysosomal AA transporter SLC38A9, indicating an endosome-centric inside-out AA sensing mechanism. In high-fat diet-fed rats, lysine/leucine/arginine had similar beneficial actions at the myocellular level as in vitro in lipid-overexposed cardiomyocytes and partially reversed cardiac hypertrophy. CONCLUSION: Specific AAs acting through v-ATPase reassembly reduce cardiac lipid uptake raising the possibility for treatment in situations of lipid overload and associated insulin resistance.


Subject(s)
Amino Acids/metabolism , Myocytes, Cardiac/drug effects , TOR Serine-Threonine Kinases/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Amino Acids/administration & dosage , Animals , Diet, High-Fat , Dietary Supplements , Endosomes/drug effects , Endosomes/metabolism , Insulin Resistance , Lipids/adverse effects , Male , Myocardial Contraction/drug effects , Myocytes, Cardiac/metabolism , Rats , Rats, Inbred Lew
3.
Article in English | MEDLINE | ID: mdl-33751940

ABSTRACT

Isolated or cultured cells have proven to be valuable model systems to investigate cellular (patho)biology and for screening of the efficacy of drugs or their possible side-effects. Pluripotent stem cells (PSC) can be readily obtained from healthy individuals as well as from diseased patients, and protocols have been developed to differentiate these cells into cardiomyocytes. Hence, these cellular models are moving center stage for a broader application. In this review, we focus on comparing mouse HL-1 cardiomyocytes, isolated adult rat cardiomyocytes, human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for the study of metabolic aspects of cardiac functioning in health and disease. Various studies have reported that these cellular models are suitable for assessing substrate uptake and utilization, in that each display an adequate and similar response to physiological triggers, in particular the presence of insulin. Likewise, disease conditions, such as excess lipid supply, similarly affect each of these rodent and human cardiomyocyte models. It is concluded that PSC-CMs obtained from patients with cardiogenetic abnormalities are promising models to evaluate the functional consequence of gene variants with unknown significance.


Subject(s)
Fatty Acids/metabolism , Induced Pluripotent Stem Cells/pathology , Insulin Resistance , Myocytes, Cardiac/pathology , Animals , Cell Differentiation/physiology , Glucose/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Rodentia
4.
Int J Mol Sci ; 21(4)2020 Feb 23.
Article in English | MEDLINE | ID: mdl-32102213

ABSTRACT

The diabetic heart is characterized by a shift in substrate utilization from glucose to lipids, which may ultimately lead to contractile dysfunction. This substrate shift is facilitated by increased translocation of lipid transporter CD36 (SR-B2) from endosomes to the sarcolemma resulting in increased lipid uptake. We previously showed that endosomal retention of CD36 is dependent on the proper functioning of vacuolar H+-ATPase (v-ATPase). Excess lipids trigger CD36 translocation through inhibition of v-ATPase function. Conversely, in yeast, glucose availability is known to enhance v-ATPase function, allowing us to hypothesize that glucose availability, via v-ATPase, may internalize CD36 and restore contractile function in lipid-overloaded cardiomyocytes. Increased glucose availability was achieved through (a) high glucose (25 mM) addition to the culture medium or (b) adenoviral overexpression of protein kinase-D1 (a kinase mediating GLUT4 translocation). In HL-1 cardiomyocytes, adult rat and human cardiomyocytes cultured under high-lipid conditions, each treatment stimulated v-ATPase re-assembly, endosomal acidification, endosomal CD36 retention and prevented myocellular lipid accumulation. Additionally, these treatments preserved insulin-stimulated GLUT4 translocation and glucose uptake as well as contractile force. The present findings reveal v-ATPase functions as a key regulator of cardiomyocyte substrate preference and as a novel potential treatment approach for the diabetic heart.


Subject(s)
Lipid Metabolism , Lipids/adverse effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/pharmacology , Animals , Biological Transport/drug effects , CD36 Antigens/metabolism , Endosomes/metabolism , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Humans , Induced Pluripotent Stem Cells , Insulin Resistance , Lipid Accumulation Product , Male , Myocardial Contraction/drug effects , Phosphotransferases/metabolism , Rats , Sarcolemma/metabolism , Triglycerides/metabolism
5.
Biomacromolecules ; 19(2): 353-363, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29284260

ABSTRACT

Gene therapy is rapidly regaining traction in terms of research activity and investment across the globe, with clear potential to revolutionize medicine and tissue regeneration. Viral vectors remain the most commonly utilized gene delivery vehicles, due to their high efficiency, however, they are acknowledged to have numerous drawbacks, including limited payload capacity, lack of cell-type specificity, and risk of possible mutations in vivo, hence, patient safety. Synthetic nanoparticle gene delivery systems can offer substantial advantages over viral vectors. They can be utilized as off-the-shelf components to package genetic material, display targeting ligands, and release payloads upon environmental triggers and enable the possibility of programmed cell-specific uptake and transfection. In this study, we have synthesized three functional polymeric building blocks that, in a rapid, facile, tailorable, and stage-wise manner, associate through both electrostatic and noncovalent hydrophobic "host-guest" interactions to form monodisperse self-assembled nanoparticles (SaNP). We show that these SaNPs successfully package significant amounts of microRNA through to plasmid DNA, present desired ligands on their outer surface for targeted receptor-mediated cell-specific uptake and affect efficient translation of packaged plasmids. We confirm that these SaNPs outperform commercially available, gold standard transfection agents in terms of in vitro transfection efficiencies and have very low cytotoxicity. With facile self-assembly and tailorable composition, our SaNP gene delivery system has significant potential in targeted gene therapy applications.


Subject(s)
Gene Transfer Techniques/standards , MicroRNAs/administration & dosage , Nanoparticles/chemistry , Plasmids/administration & dosage , Cell Line, Tumor , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...