Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Process Impacts ; 26(2): 357-367, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38170844

ABSTRACT

Treated wastewater effluent is a major contributor to concentrations of many anthropogenic chemicals in the environment. Examining patterns of these compounds measured from different catchment areas comprising the influent to a wastewater treatment plant, across many months, may reveal patterns in compound sources and seasonality helpful to management efforts. This study considers a wastewater catchment system that was sampled at six sub-catchment sites plus the treatment plant influent and effluent at seven time points spanning nine months. Wastewater samples were analyzed with LC-QTOF-MS using positive electrospray ionization and GC-QTOF-MS using negative chemical ionization and electron ionization. MS data were screened against spectral libraries to identify micropollutants. As expected, multiple classes of chemicals were represented, including pharmaceuticals, plasticizers, personal care products, and flame retardants. Patterns in the compounds seen at different sampling sites and dates reflect the varying uses and down-the-drain routes that influence micropollutant loading in sewer systems. Patterns in examined compounds revealed little spatial variation, and greater temporal variation. For example, the greatest loads of DEET were found to occur in the summer months. Additionally, groups of compounds exhibited strong correlation with each other, which could be indicative of similar down-the-drain routes (such as a group intercorrelated chemicals that are components of cleaning products) or the influence of similar physicochemical processes within the sewer system. This study contributes to the understanding of dynamics of micropollutants in sewer systems.


Subject(s)
Flame Retardants , Water Pollutants, Chemical , Wastewater , Water Pollutants, Chemical/analysis , Seasons , Gas Chromatography-Mass Spectrometry , Environmental Monitoring
2.
Environ Sci Technol ; 57(26): 9580-9591, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37350451

ABSTRACT

The Longfin Smelt (Spirinchus thaleichthys) population in the San Franscisco Bay/Sacramento-San Joaquin Delta (Bay-Delta) has declined to ∼1% of its pre-1980s abundance and, as a result, is listed as threatened under the California Endangered Species Act. The reasons for this decline are multiple and complex, including the impacts of contaminants. Because the spawning and rearing seasons of Longfin Smelt coincide with the rainy season, during which concentrations of contaminants increase due to runoff, we hypothesized that early life stages may be particularly affected by those contaminants. Bifenthrin, a pyrethroid insecticide commonly used in agricultural and urban sectors, is of concern. Concentrations measured in the Bay-Delta have been shown to disrupt the behavior, development, and endocrine system of other fish species. The objective of the present work was to assess the impact of bifenthrin on the early developmental stages of Longfin Smelt. For this, embryos were exposed to 2, 10, 100, and 500 ng/L bifenthrin from fertilization to hatch, and larvae were exposed to 2, 10, and 100 ng/L bifenthrin from one day before to 3 days post-hatch. We assessed effects on size at hatch, yolk sac volume, locomotory behavior, and upper thermal susceptibility (via cardiac endpoints). Exposure to these environmentally relevant concentrations of bifenthrin did not significantly affect the cardiac function of larval Longfin Smelt; however, exposures altered their behavior and resulted in smaller hatchlings with reduced yolk sac volumes. This study shows that bifenthrin affects the fitness-determinant traits of Longfin Smelt early life stages and could contribute to the observed population decline.


Subject(s)
Osmeriformes , Pyrethrins , Water Pollutants, Chemical , Animals , Pyrethrins/toxicity , Endangered Species
3.
Environ Sci Technol ; 57(13): 5404-5413, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36961760

ABSTRACT

Pesticides have been reported in treated wastewater effluent at concentrations that exceed aquatic toxicity thresholds, indicating that treatment may be insufficient to adequately address potential pesticide impacts on aquatic life. Gaining a better understanding of the relative contribution from specific use patterns, transport pathways, and flow characteristics is an essential first step to informing source control measures. The results of this study are the first of their kind, reporting pesticide concentrations at sub-sewershed sites within a single sewer catchment to provide information on the relative contribution from various urban sources. Seven monitoring events were collected from influent, effluent, and seven sub-sewershed sites to capture seasonal variability. In addition, samples were collected from sites with the potential for relatively large mass fluxes of pesticides (pet grooming operations, pest control operators, and laundromats). Fipronil and imidacloprid were detected in most samples (>70%). Pyrethroids were detected in >50% of all influent and lateral samples. There were significant removals of pyrethroids from the aqueous process stream within the facility to below reporting limits. Imidacloprid and fiproles were the only pesticides that were detected above reporting limits in effluent, highlighting the importance of source identification and control for the more hydrophilic compounds. Single source monitoring revealed large contributions of fipronil, imidacloprid, and permethrin originating from a pet groomer, with elevated levels of cypermethrin at a commercial laundry location. The results provide important information needed to prioritize future monitoring efforts, calibrate down-the-drain models, and identify potential mitigation strategies at the site of pesticide use to prevent introduction to sewersheds.


Subject(s)
Pesticides , Pyrethrins , Water Pollutants, Chemical , Animals , Pesticides/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring
4.
Environ Sci Technol ; 55(6): 3657-3667, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33647203

ABSTRACT

Urban wildfires may generate numerous unidentified chemicals of toxicity concern. Ash samples were collected from burned residences and from an undeveloped upwind reference site, following the Tubbs fire in Sonoma County, California. The solvent extracts of ash samples were analyzed using GC- and LC-high-resolution mass spectrometry (HRMS) and using a suite of in vitro bioassays for their bioactivity toward nuclear receptors [aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and androgen receptor (AR)], their influence on the expression of genetic markers of stress and inflammation [interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2)], and xenobiotic metabolism [cytochrome P4501A1 (CYP1A1)]. Genetic markers (CYP1A1, IL-8, and COX-2) and AhR activity were significantly higher with wildfire samples than in solvent controls, whereas AR and ER activities generally were unaffected or reduced. The bioassay responses of samples from residential areas were not significantly different from the samples from the reference site despite differing chemical compositions. Suspect and nontarget screening was conducted to identify the chemicals responsible for elevated bioactivity using the multiple streams of HRMS data and open-source data analysis workflows. For the bioassay endpoint with the largest available database of pure compound results (AhR), nontarget features statistically related to whole sample bioassay response using Spearman's rank-order correlation coefficients or elastic net regression were significantly more likely (by 10 and 15 times, respectively) to be known AhR agonists than the overall population of compounds tentatively identified by nontarget analysis. The findings suggest that a combination of nontarget analysis, in vitro bioassays, and statistical analysis can identify bioactive compounds in complex mixtures.


Subject(s)
Water Pollutants, Chemical , Wildfires , Animals , Biological Assay , Cell Line, Tumor , Humans , Mass Spectrometry , Mice , Receptors, Aryl Hydrocarbon , Receptors, Estrogen , Water Pollutants, Chemical/analysis
5.
Chemosphere ; 271: 129349, 2021 May.
Article in English | MEDLINE | ID: mdl-33429263

ABSTRACT

BACKGROUND/OBJECTIVE: Polyurethane foam (PUF), a proven sampling medium for measuring air concentrations of organic compounds, is widely used in upholstered home furniture. We evaluated the potential utility of couch PUF as a passive sampler and as a reservoir for non-flame retardant semivolatile organic compounds (SVOCs). METHODS: We collected PUF samples from 13 California home couches, measured concentrations (CPUF) of 64 SVOCs at three different depths (i.e., top, top-middle, and middle from couch surfaces facing outward), and examined concentration changes with depth. To calculate the PUF-air partition coefficient (KPUF-air = CPUF/Cair = CPUF × Kdust-air/Cdust), we used the calculated dust-air partition coefficient (Kdust-air) with the octanol-air partition coefficient (Koa) and dust concentrations (Cdust) simultaneously collected and measured. We used KPUF-air to compute fugacity capacity of PUF and chemical mass distribution among various indoor compartments and PUF. RESULTS: Among 29 detected compounds, 11 compounds were detected in more than 50% of the samples at all depths. Among the 11 compounds, concentrations of phenanthrene, 2-benzylideneoctanal, galaxolide, tonalide, and homosalate decreased with depth. Among the studied SVOCs, more than 20% of the total mass was distributed to couch PUF for phenol and compounds in skin-applied products (i.e., 2-benzylideoneoctanal, galaxolide, and homosalate). CONCLUSIONS: Our results showed that couch PUF can absorb many SVOCs and may be an important reservoir for some SVOCs. However, it may not be an effective passive sampling medium for those that have relatively high Koa values. Direct dermal contact with couch seats may be an important exposure route for non-users of skin-applied compounds.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Dust , Environmental Monitoring , Polyurethanes/analysis , Volatile Organic Compounds/analysis
6.
Indoor Air ; 31(3): 693-701, 2021 05.
Article in English | MEDLINE | ID: mdl-33022817

ABSTRACT

The determinants of the temporal variability of indoor dust concentrations of semivolatile organic compounds (SVOCs) remain mostly unexplored. We examined temporal variability of dust concentrations and factors affecting dust concentrations for a wide range of SVOCs. We collected dust samples three times from 29 California homes during a period of 22 months and quantified concentrations of 47 SVOCs in 87 dust samples. We computed intraclass correlation coefficients (ICCs) using three samples collected within the same house. We calculated correlation coefficients (r) between two seasons with similar climate (spring and fall) and between two seasons with opposite climate (summer and winter). Among 26 compounds that were detected in more than 50% of the samples at all three visits, 20 compounds had ICCs above 0.50 and 6 compounds had ICCs below 0.50. For 19 out of 26 compounds, correlation coefficients between spring and fall (r = 0.48-0.98) were higher than those between summer and winter (r = 0.09-0.92), implying seasonal effects on dust concentrations. Our study showed that within-home temporal variability of dust concentrations was small (ICC > 0.50) for most SVOCs, but dust concentrations may vary over time for some SVOCs with seasonal variations in source rates, such as product use.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Volatile Organic Compounds/analysis , Dust , Flame Retardants , Humans , Seasons
7.
Article in English | MEDLINE | ID: mdl-31547171

ABSTRACT

The Yurok Tribe partnered with the University of California Davis (UC Davis) Superfund Research Program to identify and address contaminants in the Klamath watershed that may be impairing human and ecosystem health. We draw on a community-based participatory research approach that begins with community concerns, includes shared duties across the research process, and collaborative interpretation of results. A primary challenge facing University and Tribal researchers on this project is the complexity of the relationship(s) between the identity and concentrations of contaminants and the diversity of illnesses plaguing community members. The framework of bi-directional learning includes Yurok-led river sampling, Yurok traditional ecological knowledge, University lab analysis, and collaborative interpretation of results. Yurok staff and community members share their unique exposure pathways, their knowledge of the landscape, their past scientific studies, and the history of landscape management, and University researchers use both specific and broad scope chemical screening techniques to attempt to identify contaminants and their sources. Both university and tribal knowledge are crucial to understanding the relationship between human and environmental health. This paper examines University and Tribal researchers' shared learning, progress, and challenges at the end of the second year of a five-year Superfund Research Program (SRP) grant to identify and remediate toxins in the lower Klamath River watershed. Our water quality research is framed within a larger question of how to best build university-Tribal collaboration to address contamination and associated human health impacts.


Subject(s)
Community-Based Participatory Research , Environmental Monitoring/methods , Environmental Pollutants/analysis , Indians, North American/psychology , Interdisciplinary Placement , California , Community-Based Participatory Research/statistics & numerical data , Environmental Health , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...