Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
BMJ Glob Health ; 9(1)2024 01 30.
Article in English | MEDLINE | ID: mdl-38290787

ABSTRACT

This manuscript describes the process and impact of strengthening the WHO Regional Office for Africa (WHO AFRO)'s COVID-19 vaccination information system. This system plays a critical role in tracking vaccination coverage, guiding resource allocation and supporting vaccination campaign roll-out for countries in the African region. Recognising existing data management issues, including complex reporting prone to human error, compromised data quality and underutilisation of collected data, WHO AFRO introduced significant system improvements during the COVID-19 pandemic. These improvements include shifting from an Excel-based to an online Azure-based data collection system, automating data processing and validation, and expansion of collected data. These changes have led to improvements in data quality and quantity including a decrease in data non-validity, missingness, and record duplication, and expansion of data collection forms to include a greater number of data fields, offering a more comprehensive understanding of vaccination efforts. Finally, the creation of accessible information products-including an interactive public dashboard, a weekly data pack and a public monthly bulletin-has improved data use and reach to relevant partners. These resources provide crucial insights into the region's vaccination progress at national and subnational levels, thereby enabling data-driven decision-making to improve programme performance. Overall, the strengthening of the WHO AFRO COVID-19 vaccination information system can serve as a model for similar efforts in other WHO regions and contexts. The impact of system strengthening on data quality demonstrated here underscores the vital role of robust data collection, capacity building and management systems in achieving high-quality data on vaccine distribution and coverage. Continued investment in information systems is essential for effective and equitable public health efforts.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Pandemics , COVID-19/prevention & control , Vaccination , Africa , World Health Organization , Information Systems
2.
MMWR Morb Mortal Wkly Rep ; 72(5): 113-118, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36730046

ABSTRACT

After the emergence of SARS-CoV-2 in late 2019, transmission expanded globally, and on January 30, 2020, COVID-19 was declared a public health emergency of international concern.* Analysis of the early Wuhan, China outbreak (1), subsequently confirmed by multiple other studies (2,3), found that 80% of deaths occurred among persons aged ≥60 years. In anticipation of the time needed for the global vaccine supply to meet all needs, the World Health Organization (WHO) published the Strategic Advisory Group of Experts on Immunization (SAGE) Values Framework and a roadmap for prioritizing use of COVID-19 vaccines in late 2020 (4,5), followed by a strategy brief to outline urgent actions in October 2021.† WHO described the general principles, objectives, and priorities needed to support country planning of vaccine rollout to minimize severe disease and death. A July 2022 update to the strategy brief§ prioritized vaccination of populations at increased risk, including older adults,¶ with the goal of 100% coverage with a complete COVID-19 vaccination series** for at-risk populations. Using available public data on COVID-19 mortality (reported deaths and model estimates) for 2020 and 2021 and the most recent reported COVID-19 vaccination coverage data from WHO, investigators performed descriptive analyses to examine age-specific mortality and global vaccination rollout among older adults (as defined by each country), stratified by country World Bank income status. Data quality and COVID-19 death reporting frequency varied by data source; however, persons aged ≥60 years accounted for >80% of the overall COVID-19 mortality across all income groups, with upper- and lower-middle-income countries accounting for 80% of the overall estimated excess mortality. Effective COVID-19 vaccines were authorized for use in December 2020, with global supply scaled up sufficiently to meet country needs by late 2021 (6). COVID-19 vaccines are safe and highly effective in reducing severe COVID-19, hospitalizations, and mortality (7,8); nevertheless, country-reported median completed primary series coverage among adults aged ≥60 years only reached 76% by the end of 2022, substantially below the WHO goal, especially in middle- and low-income countries. Increased efforts are needed to increase primary series and booster dose coverage among all older adults as recommended by WHO and national health authorities.


Subject(s)
COVID-19 , Vaccines , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Vaccination , World Health Organization
3.
Emerg Infect Dis ; 28(13): S208-S216, 2022 12.
Article in English | MEDLINE | ID: mdl-36502382

ABSTRACT

The US Centers for Disease Control and Prevention (CDC) supports international partners in introducing vaccines, including those against SARS-CoV-2 virus. CDC contributes to the development of global technical tools, guidance, and policy for COVID-19 vaccination and has established its COVID-19 International Vaccine Implementation and Evaluation (CIVIE) program. CIVIE supports ministries of health and their partner organizations in developing or strengthening their national capacities for the planning, implementation, and evaluation of COVID-19 vaccination programs. CIVIE's 7 priority areas for country-specific technical assistance are vaccine policy development, program planning, vaccine confidence and demand, data management and use, workforce development, vaccine safety, and evaluation. We discuss CDC's work on global COVID-19 vaccine implementation, including priorities, challenges, opportunities, and applicable lessons learned from prior experiences with Ebola, influenza, and meningococcal serogroup A conjugate vaccine introductions.


Subject(s)
COVID-19 , Influenza Vaccines , United States/epidemiology , Humans , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Centers for Disease Control and Prevention, U.S.
4.
Western Pac Surveill Response J ; 4(1): 25-33, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23908952

ABSTRACT

INTRODUCTION: Poverty is a risk factor for tuberculosis (TB); it increases the risk of infection and active disease but limits diagnostic opportunities. The role of poverty in the stagnant case detection in Cambodia is unclear. This study aims to assess the relationship between district household poverty rates and sputum-positive TB case notification rates (CNRs) in Cambodia in 2010. METHODS: Poisson regression models were used to calculate the relative risk of new sputum-positive TB CNR for Operational Districts (ODs) with different poverty rates using data from the National Centre for Tuberculosis and Leprosy Control and the National Committee for SubNational Democratic Development. Models were adjusted for other major covariates and a geographical information system was used to examine the spatial distribution of these covariates in the country. RESULTS: The univariate model showed a positive association between household poverty rates and sputum-positive TB CNRs. However, in multivariate models, after adjusting for major covariates, household poverty rates showed a significantly negative association with sputum-positive TB CNRs (relative risk [RR] = 0.95 per 5% increase in poverty rate). The negative association was stronger among males than females (RR = 0.93 versus 0.96 per 5% increase in poverty rate). Similar spatial patterns were observed between household poverty rates and other covariates, particularly OD population density. CONCLUSION: Household poverty rate is associated with a decrease in sputum-positive TB CNR in Cambodia, particularly in men. The potential of combining surveillance data and socioeconomic variables should be explored further to provide more insights for TB control programme planning.


Subject(s)
Disease Notification , Family Characteristics , Poverty , Tuberculosis/epidemiology , Adolescent , Adult , Cambodia/epidemiology , Female , Humans , Male , Middle Aged , Risk Factors , Tuberculosis/economics , Young Adult
5.
Article in English | WPRIM (Western Pacific) | ID: wpr-6836

ABSTRACT

Introduction: Poverty is a risk factor for tuberculosis (TB); it increases the risk of infection and active disease but limits diagnostic opportunities. The role of poverty in the stagnant case detection in Cambodia is unclear. This study aims to assess the relationship between district household poverty rates and sputum-positive TB case notification rates (CNRs) in Cambodia in 2010. Methods: Poisson regression models were used to calculate the relative risk of new sputum-positive TB CNR for Operational Districts (ODs) with different poverty rates using data from the National Centre for Tuberculosis and Leprosy Control and the National Committee for SubNational Democratic Development. Models were adjusted for other major covariates and a geographical information system was used to examine the spatial distribution of these covariates in the country. Results: The univariate model showed a positive association between household poverty rates and sputum-positive TB CNRs. However, in multivariate models, after adjusting for major covariates, household poverty rates showed a significantly negative association with sputum-positive TB CNRs (relative risk [RR] = 0.95 per 5% increase in poverty rate). The negative association was stronger among males than females (RR = 0.93 versus 0.96 per 5% increase in poverty rate). Similar spatial patterns were observed between household poverty rates and other covariates, particularly OD population density. Conclusion: Household poverty rate is associated with a decrease in sputum-positive TB CNR in Cambodia, particularly in men. The potential of combining surveillance data and socioeconomic variables should be explored further to provide more insights for TB control programme planning.

SELECTION OF CITATIONS
SEARCH DETAIL
...