Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hum Genet ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816490

ABSTRACT

The sodium-dependent multivitamin transporter encoded by SLC5A6 is responsible for uptake of biotin, pantothenic acid, and α-lipoic acid. Thirteen individuals from eight families are reported with pathogenic biallelic SLC5A6 variants. Phenotype ranges from multisystem metabolic disorder to childhood-onset peripheral motor neuropathy. We report three additional affected individuals with biallelic SLC5A6 variants. In Family A, a male proband (AII:1) presenting in early childhood with gross motor regression, motor axonal neuropathy, recurrent cytopenia and infections, and failure to thrive was diagnosed at 12 years of age via genome sequencing (GS) with a paternal NM_021095.4:c.393+2T>C variant and a maternal c.1285A>G p.(Ser429Gly) variant. An uncle with recurrent cytopenia and peripheral neuropathy was subsequently found to have the same genotype. We also report an unrelated female with peripheral neuropathy homozygous for the c.1285A>G p.(Ser429Gly) recurrent variant identified in seven reported cases, including this study. RT-PCR studies on blood mRNA from AII:1 showed c.393+2T>C caused mis-splicing with all canonically spliced transcripts in AII:1 containing the c.1285A>G variant. SLC5A6 mRNA expression in AII:1 fibroblasts was ~50% of control levels, indicative of nonsense-mediated decay of mis-spliced transcripts. Biotin uptake studies on AII:1 fibroblasts, expressing the p.(Ser429Gly) variant, showed an ~90% reduction in uptake compared to controls. Targeted treatment of AII:1 with biotin, pantothenic acid, and lipoic acid resulted in clinical improvement. Health Economic analyses showed implementation of GS as an early investigation could have saved $ AUD 105,988 and shortened diagnostic odyssey and initiation of treatment by up to 7 years.

2.
JIMD Rep ; 63(6): 546-554, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36341169

ABSTRACT

The C-terminal binding protein 1 (CTBP1) functions as a transcriptional corepressor in vertebrates and has been identified to have critical roles in nervous system growth and development. Pathogenic variants in the CTBP1 gene has been shown to cause hypotonia, ataxia, developmental delay and tooth enamel defect syndrome (HADDTS). There have only been 16 cases reported to date with heterozygous, pathogenic variants in CTBP1 manifesting with a neurodevelopmental phenotype. We report a further case of a pathogenic, heterozygous, de novo variant in CTBP1 identified by whole exome sequencing in a female with the typical phenotype of global developmental delay, hypotonia, cerebellar dysfunction and failure to thrive. Additionally, muscle biopsy demonstrates evidence of a respiratory chain defect, only previously reported once in the literature. This supports the role of CTBP1 in maintenance of normal mitochondrial activity and highlights the importance of considering secondary mitochondrial dysfunction in genes not directly involved in the mitochondrial respiratory chain.

SELECTION OF CITATIONS
SEARCH DETAIL
...